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Samenvatting 
 

Sinds de jaren 1980 zijn de glasaalintrek en de aalpopulatie zeer sterk teruggelopen. ICES (the 

International Council for Exploration of the Sea, www.ices.dk), die op verzoek van de Europese 

Commissie (EC) advies uitbrengt over de status en het beheer van visbestanden, heeft daarom aan het 

eind van de jaren 1990 advies gegeven voor het opstellen van een internationaal herstelplan. Dit heeft 

ertoe geleid dat de Europese Unie in 2007 de “verordening van de Raad tot vaststelling van maatregelen 

voor het herstel van het bestand van Europese aal (EC 1100/2007)” heeft ingevoerd. Deze verordening 

(de ‘Aalverordening’) verplicht de lidstaten om een nationaal aalbeheerplan op te stellen en te 

implementeren. Het doel van deze aalbeheerplannen is daarbij als volgt omschreven: 

 

“Doel van de beheerplannen voor aal is het verminderen van de antropogene sterfte, zodat er 

een grote kans bestaat dat ten minste 40% van de biomassa van schieraal kan ontsnappen 

naar zee, gerelateerd aan de beste raming betreffende de ontsnapping die plaats zou hebben 

gevonden indien de mens geen invloed had uitgeoefend op het bestand. De beheerplannen 

voor aal worden opgesteld met het oog op het bereiken van die doelstelling op lange termijn 

(Artikel 2.4 van de Aalverordening).” 

 

De maatregelen in het Nederlandse aalbeheerplan zijn vanaf juli 2009 geïmplementeerd (Tabel 

1). 

 

Tabel 1 Overzicht van de maatregelen in het Nederlandse aalbeheerplan. 

Maatregel aalbeheerplan 
 Terugzetten van aal op zee en op binnenwater door sportvissers 
 Verbod op recreatieve visserij, gebruikmakend van professionele vistuigen. 
 Gesloten aal visseizoen 1 september tot 1 december 
 Decentraal aalbeheer in de provincie Friesland (op basis van quotum). 
 Stoppen met uitgave van peurvergunningen op Staatswateren. 
 Onderzoek naar het kweken van aal in gevangenschap.  
 Oplossen van migratieknelpunten bij sluizen, gemalen en andere kunstwerken. 
 Aangepast turbinebeheer bij de drie grote waterkrachtcentrales, verminderen sterfte met minstens 35% 
 Visserijvrije zones in gebieden die belangrijk zijn voor aal migratie. 

 Sluiten van de visserij in de belangrijkste grote rivieren, met als aanleiding dioxineverontreiniging (april 2011). 
 Uitzet van glas- en pootaal. 

 

De Aalverordening verplicht lidstaten ook om over de effectiviteit van de aalbeheerplannen te 

rapporteren aan de EC. Deze verplichting gold voor de eerste drie rapportages elke drie jaar (tot en met 

2018), en daarna elke zes jaar. Echter, aangezien de huidige stand van de aalpopulatie nog steeds 

zorgwekkend is, hebben de lidstaten afgesproken om voorlopig drie jaarlijks te blijven rapporteren aan 

de EC.  

 

De onderhavige rapportage heeft een aantal updates ondergaan in vergelijking met de vorige rapportage 

(van de Wolfshaar et al., 2018). Ten eerste is de driejaarlijkse periode verschoven met één jaar. De 

meest recente periode van rapporteren is daardoor 2018-2020 (en niet 2017-2019), zodat de meest 

recente data is meegenomen in deze rapportage. Daarnaast zijn de verschillende onderliggende 

modellen verbeterd. Als gevolg van de verschuiving zijn de schattingen uit voor de eerdere driejaarlijkse 

periodes opnieuw berekend waarbij gebruik is gemaakt van de verbeterde modellen.  

 

In deze rapportage wordt het aalbeheerplan geëvalueerd in het licht van het bovenstaande beheerdoel 

uit de Aalverordening (Artikel 2.4). De methodiek die bij deze evaluatie is gehanteerd, komt voort uit 

ICES SGIPEE (Study Group on International Post-Evaluation on Eels, 2010a, 2011). De evaluatie is 

uitgevoerd door middel van modellen, vangstgegevens, veldwaarnemingen en statistische analyses, 

welke worden beschreven in de rapportage. Het geheel van deze inspanning resulteert in schattingen van 

een aantal, door de EC gevraagde, bestandsindicatoren voor vijf driejaarlijkse periodes (2006-2008, 

2009-2011, 2012-2014, 2015-2017 en 2018-2020). De belangrijkste bestandsindicatoren zijn B0, Bcurrent 

en LAM. B0 is de biomassaschatting van uittrekkende schieraal in een pristine situatie. Voor Nederland is 
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deze vastgesteld op 10.400 ton op basis van wetenschappelijke onderzoeken, de beoordeling van de 

resultaten van die twee onderzoeken door een onafhankelijke commissie van deskundigen en de 

beoordeling van dit geheel door ICES (ICES 2010b). 

 

De 10.400 ton hebben betrekking op de binnenwateren. Voor alle wateren (dus ook de kustwateren en 

de visserijzone) gaat het om 13.000 ton (B0); 40% hiervan is 5200 ton. Voor de kustwateren en de 

visserijzone is er geen monitoringsprogramma, daarom worden alleen de “binnenwateren” meegenomen.  

Bcurrent is de schatting van de daadwerkelijke schieraalbiomassa die uittrekt naar zee. De doelstelling voor 

de lange termijn (artikel 2.4) is dat de verhouding tussen Bcurrent en B0 hoger is dan 0.40 (40%). LAM 

geeft de hoogte van de totale antropogene sterfte aan. Deze bestaat voornamelijk uit barrièresterfte en 

visserijsterfte. 

 

Effecten van het Nederlandse aalbeheerplan op de Nederlandse aalpopulatie 

De schattingen van de bestandsindicatoren laten zien dat de maatregelen uit het Nederlandse 

aalbeheerplan hebben geleid tot een toename van de uittrekkende schieraalbiomassa (Bcurrent) en een 

teruggang in antropogene sterfte (LAM) tussen 2006-2008 en 2015-2017 (Tabel 2). In het bijzonder de 

eerste periode na de implementatie van de maatregelen uit het Nederlandse aalbeheerplan (2009-2011) 

resulteerde in een afname in antropogene sterfte. De daaropvolgende en de tweede periode na invoering 

(2012-2014) leidde tot een toename van de uittrekkende schieraalbiomassa (Tabel 2). De reductie in 

antropogene sterfte was voornamelijk het gevolg van een afname van de aanlandingen (visserijdruk) in 

de commerciële en recreatieve visserij. Echter in de meest recente periode (2018-2020) is de 

antropogene sterfte weer toegenomen. Dit wordt hoofdzakelijk veroorzaakt door een toename van de 

commerciële visserij (inspanning en aanlandingen) in het IJsselmeer/Markermeer in de in deze periode 

(Table 2-1 & Appendix A0). In deze laatste periode (2018-2020) is er ook een afname in de biomassa 

uittrekkende schieraal (Bcurrent) in vergelijking met de periodes ervoor. Deze afname is het gevolg van de 

hogere antropogene sterfte (LAM), en de lagere biomassa schatting van de aanwezige rode aal en 

schieraal. Dit laatste is een resultaat van de lagere vangstsuccessen in de gebruikte monitoringen. 

 

Tabel 2 Schattingen van de belangrijkste bestandsindicatoren. B0 biomassa schatting voor uittrekkende 
schieraal in een pristine situatie (tonnen); Bcurrent de schatting van de daadwerkelijke schieraalbiomassa 
uittrek (tonnen); 100* Bcurrent /B0 huidige schieraaluittrek als percentage van de pristine uittrek; LAM: 
Lifetime Antropogene Sterfte; Mbarrier Schieraal barrière sterfte. 

Stock Indicator B0
* Bcurrent 100* Bcurrent /B0 LAM Mbarrier 

2006-2008 10,400 634 6.1% 83% 17% 

2009-2011 10,400 837 8.1% 53% 16% 

2012-2014 10,400 1,311 12.6% 42% 14% 

2015-2017 10,400 1,463 14.1% 40% 11% 
2018-2020 10,400 974 9.4% 55% 13% 

* Zonder kustwateren (2,600 t)  

 

Door aanpassingen aan de infrastructuur bij migratieknelpunten, alsmede de verhouding biomassa 

tussen verschillende gebieden in Nederland, is het percentage barrière sterfte van schieraal licht 

afgenomen (van 17% in 2006-2008 naar 13% in 2018-2020). Van 2015-2017 tot 2018-2020 is de 

barrière sterfte licht toegenomen van 11% naar 13%. Deze toename is niet veroorzaakt door nieuwe 

barrières, maar door een verschil in de ruimtelijke verdeling van aal. 

 

De status van het aalbestand in Nederland blijft in 2018-2020 verontrustend met hoge sterfte en lage 

biomassa. De huidige biomassa van uittrekkende schieraal (9.4%) ligt ver onder de doelstelling van 

minimaal 40% van de pristine biomassa en de huidige sterfte door menselijk handelen ligt boven de 

geadviseerde sterfte bij een dergelijke lage biomassa aan uittrekkende schieraal.  

 

Een verbetering in de aalpopulatie in Nederland en in de uittrek van schieraal wordt niet op de korte 

termijn verwacht omdat aal een langlevende soort is. Het duurt naar schatting 1-3 jaar voordat glasaal 

aankomt voor de Nederlandse kust en de binnenwateren op zwemt. Vervolgens duurt het 3-20 jaar 
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voordat deze aal “schieraal” wordt, en terugtrekt naar zee. Daarnaast is de aalpopulatie een 

panmixtische populatie met een natuurlijke verspreiding van Noorwegen tot noord Afrika. Herstel in 

biomassa is daardoor de gezamenlijke verantwoordelijkheid van alle landen. 

 

Uit de analyses is wederom gebleken dat er grote aannames gemaakt moeten worden om tot een 

biomassaschatting te komen, welke van invloed kunnen zijn op de resultaten. De omvang van de 

opwerking (aalbiomassa in álle Nederlandse wateren) en de beschikbare (historische) gegevens lenen 

zich niet tot zeer nauwkeurige berekeningen. De schattingen van de bestandsindicatoren moeten daarom 

voorzichtig worden geïnterpreteerd vanwege de aanzienlijke mate van onzekerheid rond deze 

schattingen.  
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Summary 
Since the 1980s, the arrival of glass eel at the coast and the European eel stock have declined sharply. 

ICES (the International Council for Exploration of the Sea, www.ices.dk), which provides advice on the 

status and management of fish stocks at the request of the European Commission (EC), has therefore 

recommended the implementation of a recovery plan since the 1990’s. As a result, in 2007 the EU 

introduced the ‘Council Regulation establishing measures for the recovery of the stock of European eel 

(EC 1100/2007)’. This regulation (the 'Eel Regulation') requires Member States to develop and 

implement a national eel management plan. The purpose of these eel management plans is described as 

follows (Article 2.4): 

 

”The objective of each Eel Management Plan shall be to reduce anthropogenic mortalities 

so as to permit with high probability the escapement to the sea of at least 40% of the 

silver eel biomass relative to the best estimate of escapement that would have existed if 

no anthropogenic influences had impacted the stock. The Eel Management Plan shall be 

prepared with the purpose of achieving this objective in the long term.” 

 

The Dutch Eel Management Plan was implemented in July 2009 (Table 0-1). 

Table 0-1 Overview of the measures in the Dutch Eel Management Plan. 

Measure 
 Implementation of a program for the improvement of fish migration including eel, which is expected to resolve the issues 

at 1800 of the most important migration barriers. 
 Reduction of eel mortality at hydroelectric stations with at least 35%. 

 The establishment of zones where fishing is not allowed in areas that are important for eel migration. 
 Closed area to eel fisheries due to high levels of dioxins and PCB’s  (April 2011) 

 Release of eel caught (a) at sea and (b) at inland waters by anglers. 

 Ban on recreational fishing using professional gear in coastal areas. 

 Annual closed season from 1 September to 1 December. 

 Decentralized eel management in the province of Friesland (a quota system). 

 Stop the issue of licenses for eel snigglers (Dutch: ‘peur’) by the minister of LNV in state-owned waters. 

 Restocking of glass eel and pre-grown eel from aquaculture  

 Research into the artificial propagation of eel 

 

The Eel Regulation also obliges the reporting to the European Commission (EC) on the effectiveness of 

the eel management plans. This obligation was intended to apply every three years for the first three 

reports (up to and including 2018), and every six years thereafter. However, as the eel population is still 

in a worrying state, it was agreed to continue reporting on the status of the eel stock to the EC every 

three years.  

 

This report has undergone several updates compared to the previous report. First, the three-year 

reporting period was shifted by 1 year. The most recent reporting period is therefore 2018-2020 (and not 

2017-2019), as a result of which the most recent data could be included. In addition, the various models 

have been improved. The estimates from earlier periods have also been recalculated, taking into account 

the improvements. 

 

In this report, the eel management plan is evaluated in the light of the management objective from the 

Eel Regulation. The methodology used in this evaluation is derived from ICES SGIPEE (Study Group on 

International Post-Evaluation on Eels, 2010a, 2011). The evaluation is carried out using models, catch 

data, field observations and statistical analyses, which are described in the report. This effort has 

resulted in estimates of a number of stock indicators for five three-year periods (2006-2008, 2009-2011, 

2012-2014, 2015-2017 and 2018-2020). The main indicators are B0, Bcurrent and LAM. B0 is the biomass 

estimate of escaping silver eel in a pristine situation. The value of B0 was determined in 2010 (ICES 

2010b) and has not changed since. Bcurrent is the estimate of the actual silver eel biomass that migrates 

to the sea. The long-term objective is that the ratio between Bcurrent and B0 will reach and will remain 
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above 0.40 (40%). LAM indicates the level of anthropogenic mortality. This mainly consists of barrier 

mortality and fishing mortality. 

 

The results show that the measures from the Dutch eel management plan have led to an increase in 

biomass escaping silver eel (Bcurrent) and a decrease in anthropogenic mortality (LAM) between 2006-

2008 and 2015-2017 (Table 0-2). In particular, the first period after the introduction of the Dutch eel 

management plan (2009-2011) led to a decrease in anthropogenic mortality and the second period after 

implementation (2012-2014) led to an increase in biomass of escaping silver eel (Table 0-2). The 

reduction in anthropogenic mortality was mainly due to decreases in catches from both commercial and 

recreational fisheries. However, anthropogenic mortality has increased again in the last period (2018-

2020). This is caused by an increase in the commercial fisheries (landings and effort), mainly in the lakes 

IJsselmeer and Markermeer (Table 2-1 & Appendix A0).  In this same period there is also a decrease in 

the biomass of escaping silver eel (Bcurrent). This is caused by the higher anthropogenic mortality, but also 

due to the lower biomass estimate of the current standing stock of present yellow and silver eel. This is a 

direct result of the lower catch success in several monitoring programs. 

 

Due to adjustments to the infrastructure at migration bottlenecks, as well as the biomass ratio between 

different areas in the Netherlands, the barrier mortality (Mbarrier) has decreased slightly between 2006-

2008 and 2018-2020 (from 17% in 2006-2008 en 13% in 2018-2020, Table 0-2). From 2015-2017 to 

2018-2020 the barrier mortality increased slightly from 11% to 13%. This increase was not caused by 

new barriers, but by a difference in the distribution of eel. 

 

Table 0-2 Estimates of the most important stock indicators. B0 biomass estimate of escaping silver eel 
under pristine conditions (tonnes); Bcurrent estimate of the current silver eel escapement to the sea (tonnes); 
100* Bcurrent /B0 current silver eel escapement as a percentage of the pristine escapement; LAM total 
(lifetime) anthropogenic mortality rate; Mbarrier: barrier mortality rate. 

Stock Indicator B0
* Bcurrent 100* Bcurrent /B0 LAM Mbarrier 

2006-2008 10,400 634 6.1% 83% 17% 

2009-2011 10,400 837 8.1% 53% 16% 

2012-2014 10,400 1,311 12.6% 42% 14% 

2015-2017 10,400 1,463 14.1% 40% 11% 
2018-2020 10,400 974 9.4% 55% 13% 

* Excluding coastal waters (2,600 tonnes)  

The status of eels in the Netherlands remains worrying in 2018-2020 with high mortality and low 

biomass. The current biomass of silver eel escapement as a percentage of B0 (9.4%) is far below the 

target of 40%. In addition, the current mortality due to human activity is remains high and has even 

increased in the latest period. 

 

An improvement in the eel population in the Netherlands and in the migration of silver eel is not 

expected in the short term because eel is a long-lived species. It takes an estimated 1-3 years before 

glass eels arrive at the Dutch coast and enter the inland waters. It then takes 3-20 years for these eels 

to become silver eels and return to the sea. In addition, the eel population is a panmictic population with 

a natural distribution from Norway to North Africa. Biomass recovery of the total eel stock is therefore 

the joint responsibility of all countries within the natural range of the eel population. 

 

The analyses once again show that large assumptions are made in order to arrive at a biomass estimate, 

which may influence the results. The size of the area for reporting the eel biomass (all Dutch waters) and 

the (historical) available data do not lend themselves to very accurate calculations. The estimates of the 

stock indicators used to evaluate the status of the stock need to be interpreted with care due to the 

significant level of uncertainty surrounding these estimates.  
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1 Introduction 
 

1.1 EU regulation and the Dutch eel management plan 

The decline in the European eel (Anguilla anguilla) stock since the 1980’s caused the International 

Council for the Exploration of the Sea (ICES) to recommend the development of a recovery plan for the 

European eel stock. In response to this advice, the EU Regulation for the Recovery of the Eel Stock (EC 

1100/2007) was adopted in 2007. It required each Member State (MS) within the natural distribution 

area to set up Eel Management Plan’s (EMP’s) by the end of 2008 with the following aim: 

 

”The objective of each Eel Management Plan shall be to reduce anthropogenic mortalities 

so as to permit with high probability the escapement to the sea of at least 40% of the 

silver eel biomass relative to the best estimate of escapement that would have existed if 

no anthropogenic influences had impacted the stock. The Eel Management Plan shall be 

prepared with the purpose of achieving this objective in the long term.” 

 

Each EMP covers an Eel Management Unit (EMU). An EMU covers a specific eel habitat (for example a 

river basin) and within MS’s there can be a set of different EMU’s. However, the Netherlands is located in 

the joint delta of four major rivers and the rivers are intertwined and confluent. Therefore there are no 

sharp boundaries between river basins in the Netherlands and is was decided that the Netherlands is a 

single EMU and therefore also a single EMP was drawn up for the Netherlands. The Dutch EMP was 

approved by the European Commission (EC) in October 2009. After the approval, several measures as 

described in the EMP to reduce eel mortality were implemented (Table 1-1). An adjustment to the EMP 

was made in 2018, with approval of the European Commission. In 2012, 2015 and 2018, progress 

reports were sent to the EC showing that the status of eel in Dutch waters remained in a situation 

regarded as “undesirable”, and below the target of 40% of the estimated pristine situation. However, the 

progress reports also show that implementation of the EMP has resulted in an initial increase in biomass 

and a decrease in anthropogenic mortality (Bierman et al., 2012; van de Wolfshaar et al., 2015 & 2018). 
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Table 1-1 Overview of the implemented measures described in the Dutch Eel Management Plan (Ministry 
of Agriculture, Nature and Food quality (2018). 
Measure  Planned 

implementation 
Realized 
implementation 

 Implementation of a program for the improvement of fish migration 
including eel, which is expected to resolve the issues at 1800 of the most 
important migration barriers. 

2015-2027 2015-2027a 

 Reduction of eel mortality at hydroelectric stations by at least 35%. 2009 November 2011b 
 The establishment of zones where fishing is not allowed in areas that are 

important for eel migration. 
2010 1 April 2011c 

 Closed area to eel fisheries due to high levels of dioxins and PCB’s Unforseen 1 April 2011c 
 Release of eel caught (a) at sea and (b) at inland waters by anglers. 2009 1 October 2009 
 Ban on recreational fishing using professional gear in coastal areas. 2011 1 January 2011 
 Annual closed season from 1 September to 1 December. 2009 1 October 2009d 

 Decentralized eel management in the province of Friesland (a quota 
system). 

- 2018d 

 Stop the issue of licenses for eel snigglers (Dutch: ‘peur’) by the minister of 
LNV in state-owned waters. 

2009 1 May 2009 

 Restocking of glass eel and pre-grown eel from aquaculture  2009 Early 2010 
 Research into the artificial propagation of eel: 
 

    
PRO-EEL (EU-project)  2010 

 
2010-2015 
 EEL- HATCH 2014 

 
2014-2017 
 EELRIC (Dutch innovation centrum) 2015 2015 - ongoing 

Glasaal Volendam (duurzame palingkweek/innovatief broedhuis) 2017 2017 - ongoing 
a In agreement with the EC, changes have been made to the original schedule of solving migration barriers. 

b Due to technical difficulties, the maximum achievable reduction in mortality through adjusted turbine management is 24%. 

c There was an (unforeseen) closure of eel fishery in contaminated (PCBs, dioxins) areas (all large rivers). The majority of the contaminated 

areas that were closed for commercial fisheries on 1/4/2011 include the main rivers. These rivers are the most important migration routes for 

diadromous species. 

d In 2011 the province of Friesland started a pilot on a quota system. This system was adopted in the eel management plan in 2018. This 

allows those fishermen fishing in the province of Friesland to fish during the closed season based on a TAC (quota of 36.6 tonnes for all 

fishermen). 

 

1.2 Description of stock indicators.  

In order to assess the status of the stock, the EC requires each MS to estimate a set of stock indicators 

(Table 1-2), which are used to evaluate the status of the eel stock in relation to a pristine situation. 

Estimates of escaping silver eel biomasses and mortality rates of all eel are requested by the EC (Table 

1-2). An explanation of each stock indicator is briefly described below. 

 

B0 is the pristine silver eel biomass escapement to sea to spawn. It is an estimated value of the biomass 

that would exist if no anthropogenic mortalities for eel had ever taken place. The B0 value for the 

Netherlands is set at 13,000 tonnes, of which 10,400 tonnes in inland waters (ICES 2010b). The target 

of the EU Regulation is set at 40% of this measure, i.e. 4,160 tonnes in inland waters in the Netherlands. 

An exact value of B0 is extremely difficult to assess. Therefore the estimate has a wide uncertainty range 

and has been subject to discussion (see Paragraph 9.1.1). 

 

Bcurrent is an estimate of current silver eel biomass escapement to the sea to spawn. It gives an 

indication on how close a MS is to achieve the long-term objective (40% of B0) of the EU Regulation for 

the Recovery of the Eel Stock (EC 1100/2007). However, Bcurrent does not depend only on anthropogenic 

mortality in a single EMU. The current biomass also highly depends on the number of recruits (glass eels) 

arriving at the Dutch coast. This inflow of recruits is, currently at a very low level  (ICES 2020). However, 

because the European eel is one panmictic population, the inflow of recruits in the Netherlands depends 

on the silver eel escapement of all countries within the natural distribution area of European eel. 

  

Bbest is an estimate of the best possible silver eel escapement under recent recruitment conditions. It is 

an estimate of the current escaping silver eel biomass if there would be no anthropogenic influences.  
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LAM and ΣA, ΣF and ΣH are anthropogenic mortality rates for all eel (Table 1-2). LAM is the Lifetime 

Anthropogenic mortality percentage. ΣA is the total anthropogenic mortality rate, ΣF is the fishing 

mortality rate and ΣH is the anthropogenic mortality rate other than fishing mortality. For this 

evaluation, ΣH includes only the barrier mortality rate. Mortality rates due to, for example, pollution or 

parasites, are not taken into account, because they are extremely difficult to assess. The mortality rates 

give an indication whether management measures have resulted in a reduction in anthropogenic 

mortalities in a single EMU. 

 
Table 1-2 Overview of the main stock indicators to be reported to the EC. The MS’s are also obliged to 
report on the amount of glass eel (eel below 12 cm) harvested for restocking. These are not reported 
here because this is not relevant for the Netherlands as no glass eel is harvested. 
Indicator Description 

B0 Silver eel escapement (biomass) in the absence of any anthropogenic impact and at historic recruitment 
levels. 

Bcurrent  Silver eel biomass estimate that currently escapes to the sea to spawn.  

Bbest Silver eel biomass estimate without anthropogenic influences on the current stock, i.e. the best biomass 
possible under current recruitment levels.  

ΣF Fishing mortality rate (commercial and recreational). 

ΣH Anthropogenic mortality rate other than fishing mortality (e.g., barrier mortality). 
ΣA The sum of anthropogenic mortalities, i.e., ΣA = ΣF + ΣH. 

 

1.3 Structure of the report and flow diagram 

To estimate the stock indicators described above (Table 1-2) the following calculations were carried out: 

 
1) The biomass of the yellow and silver eel standing stock. 
2) The yellow eel fishing mortality. 
3) The mortality of migrating silver eel.  
4) The total biomass of escaping silver eel. 
5) The stock indicators. 

 

Each step is briefly described below. In the following chapters, the methods are described in more detail. 

 

First, the biomass of the yellow eel and silver eel standing stock is estimated with two different models. 

For most water bodies, but not the large lakes IJsselmeer, Markermeer, Randmeren and Grevelingen, a 

model where survey density from different surveys is scaled up to the total water surfaces is used. This 

model is called the ‘Static Spatial Model’. For lakes IJsselmeer and Markermeer, a population dynamics 

model is parameterized to estimate fishing mortality (F) in these lakes. This model is called the 

‘Demographic Model’. The estimated fishing mortality is used in combination with the amount of yearly 

landings to estimate the standing stock biomass. For the lakes Randmeren and Grevelingen, the eel 

density as estimated in the lakes IJsselmeer and Markermeer is used as basis. Survey data in the 

Randmeren was available from 2012, which were used to correct the Randmeren values for differences in 

survey density.  

 

Static spatial model: Stock estimates were made based on data from electric dipping nets, by 

scaling data on density (eel biomass per length class per area) to total wetted areas of water 

bodies. The amount of silver eel was estimated using a maturation key. This method is used for all 

inland waters, except the large lakes IJsselmeer, Markermeer, Randmeren and Grevelingen. The 

static spatial model is explained in detail in Chapter 3. 

 

Demographic model: For the large lakes the method of the static spatial model is considered 

unreliable, because the surveys are conducted at the shore and raised to the level of the whole 

surface of the waterbody. The lakes have a disproportionally large surface area, as compared to 

the shores and therefore, strong assumptions would have to be made to use this data as is done 



14 van 97 Report CVO 21.023 

 

in the static spatial model. Instead, for the lakes IJsselmeer and Markermeer, the fishing mortality 

rates were estimated by fitting a ‘Demographic Model’ to the electric trawl survey time series with 

the recruitment index at Den Oever as basis for the level of eel recruitment. The estimated fishing 

mortality rates were used in combination with the landings, to obtain estimates of the total eel 

standing stock in the lakes. The estimated eel density in the lakes IJsselmeer and Markermeer was 

also used to estimate the density for the Randmeren and Grevelingen. The number of silver eel 

was estimated using a maturation key. The demographic model is explained in detail in Chapter 4. 

 

Next, a barrier model was used to estimate the silver eel mortality during migration from inland 

water bodies to the sea, due to barriers such as pumping stations and HSP’s. The model assumes 

that, depending on the starting position, silver eels experience a different mortality risk depending 

on the numbers and types of barriers they encounter during migration to the sea. The estimation 

of the barrier mortality is described in detail in Chapter 6. 

 

By combining the silver eel biomasses resulting from the static spatial model and the demographic 

model and the mortality of the migrating silver eel, the total biomass of escaping silver eel is 

estimated. In the final step, the estimated starting biomass, escaping biomass, the landings and 

the demographic model are combined to calculate the stock indicators (Table 1-2). The estimation 

of the stock indicators is described in detail in Chapter 7. 

 
1.3.1 Structure of the report 

As explained above, the stock assessment method consists of several steps. Below the content of each 

Chapter is summarized: 

 

Chapter 2: In this chapter the biological keys are presented (maturity-at-length, weight-

at-length, and sex-ratio-at-length) that are used in the demographic model 

and the static spatial model. 

Chapter 3: In this chapter the static spatial model is described, which is used for the 

estimation of yellow eel and silver eel biomass in the regionally and nationally 

managed water bodies other than the large lakes (lakes IJsselmeer, 

Markermeer, Randmeren and Grevelingen). For larger, mostly nationally 

managed water bodies such as the main rivers and for the majority of smaller, 

mostly regionally managed water bodies, data from surveys using electric 

dipping nets were available.  

Chapter 4: In this chapter the demographic model is described. The model is used for 

estimating the silver and yellow eel biomass in the large lakes, IJsselmeer, 

Markermeer, Randmeren and Grevelingen.  

Chapter 5: In this chapter the total standing stock biomass is estimated by summing the 

results from the demographic model for Lake IJsselmeer, Markermeer, 

Randmeren and Grevelingen (Chapter 4) and the results from the standing 

stock biomass in the spatial spatial model from the other nationally managed 

waters and regionally managed waters (Chapter 3). 

Chapter 6: In this chapter the migration model for the estimation of silver eel mortality 

due to barriers is described. 

Chapter 7: In this chapter the results from chapters 2-6 are used for the estimation of the 

final key stock indicators (Chapter 7).  

Chapter 8: In this chapter the stock indicators are discussed using the modified 

precautionary diagram as developed by ICES. 

Chapter 9: The report concludes with a general discussion and recommendations for 

improvements to the stock assessment methodology. 

 



15 van 97 Report CVO 21.023 

 

The flow diagram below gives a broad overview of the key steps in the stock assessment methodology, 

with reference to the chapters.  

Figure 1-1 Flow diagram representing the key steps in the stock assessment methodology, and the 
structure of this report. 

1.4 Assessment updates 

Since the latest report, several improvements were made, which are described below: 

 

1) In order to include the most recent (2020) data, the three-year period was shifted by one year 

compared to previous reports (Van de Wolfshaar et al., 2015 & 2018), such that the latest period 

is 2018-2020 (instead of 2017-2019). This results in the following periods to report on: 2006-

2008, 2009-2011, 2012-2014, 2015-2017 and 2018-2020. 

2) Improvements on the estimation of the biological keys (Chapter 2). 

a. Sex ratio at length and maturation at length were estimated with a Generalized additive 

model (GAM).  

b. Growth was fitted with a von Bertalanffy growth function. 

c. Weight at length is now estimated for males and females separately. 

3) The demographic model was updated and improved (see Chapter 4 for more detail). 

4) For the Water Framework Directive (WFD) waters a moving average was estimated, with average 

values for each six-year period (Chapter 3).  

5) The Randmeren and Grevelingen have been assessed using eel density instead of fishing 

mortality from the lakes IJsselmeer and Markermeer, in combination with survey data for the 

Randmeren (Chapter 4).  
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2 Available data and biological keys 

2.1 Short description of main data sets 

The main data sets used in the stock assessment are described below. More detailed information is 

described in van Keeken et al. (2020a): 

 

1) Retained catches. Retained catches are defined as the landings from commercial fishers. 

Since 2010 all freshwater landings are provided by the Ministry of Agriculture Nature and 

Food Quality (LNV) and are stored in a database (‘Visstat’). For the  landings in 2006-2008 

in the Netherlands, an estimate as given in the EMP (Ministry of Agriculture, Nature and 

Food quality, 2018) is used. For the period 2009-2011, the average of 2010 and 2011 is 

used. For lakes IJsselmeer and Markermeer, PO (product board) data is available for the 

periods before 2010. 
 

2) Market sampling. Representative samples are taken from retained catches from 

commercial fisheries each year and the lengths of the individual eels are measured (van 

Keeken et al. 2018). Furthermore, several eels per length class were selected from each 

sample for dissection and measurements of maturity, weight and sex (see van Keeken et al. 

2020a for methods). These measurements are used to calculate maturity-at-length, weight-

at-length, and sex-ratio-at-length. From a subsample of these eels, age readings of otoliths 

are conducted, in order to estimate sex-specific growth curves. Data from the market 

sampling between 2006 and 2020 are used in this assessment. The biological keys (Chapter 

2) are used in the demographic model (Chapter 3), in the static spatial model (Chapter 4) 

and to calculate the reference points (Chapter 7). 
 

3) Surveys in regionally managed water bodies. Eel sampling within the Water 

Framework Directive (WFD, 2000/60/EC) waters was executed following an EU certified 

protocol. In the assessments presented here only data from electrofishing with electric 

dipping nets were used. Sampled water bodies are representative for water types defined 

within the Netherlands based on WFD regulation. Data collection is managed and stored by 

regional water boards. Electric dipping net data for recent years were obtained from ATKB 

(consultancy for water, soil, and ecology) and several water boards. A total of ~8800 

samples by electric dipping nets were available between 2006 and 2019, covering most of 

the combination of water boards and water body types. 
 

4) Surveys in nationally managed water bodies. Within the survey program “Fish 

Monitoring National Waters,” fish species in the main Dutch rivers are monitored yearly 

(van Keeken et al., 2020a). In the program, the main rivers and water bodies connected to 

the main rivers are sampled in autumn or in some cases early spring. Depending on the 

region, sampling started in 1997 or later. 

 

5) Non - Water Framework Directive waters. Ditches are underrepresented in the set of 

WFD water bodies. Therefore, a survey with an electric dipping net is carried out by 

Wageningen Marine Research (WMR) every year and is added separately to the spatial 

model. A total of ~350 samples by electric dipping nets were available between 2013 and 

2020. 

 

6) FYMA electric trawl survey in lakes IJsselmeer and Markermeer. Since 1989, WMR 

has been conducting an annual (yellow) eel survey in lake IJsselmeer (25 sites) and lake 

Markermeer (15 sites) with an electrified trawl. The survey takes place in the autumn 

(October-November). The data is used to tune the demographic model (Chapter 4, van 

Keeken et al., 2020a). 
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7) Glass eel survey liftnet Den Oever Since 1938, recruitment monitoring has been running 

at Den Oever. The monitoring is conducted with a liftnet (1x1 m) during March-May. Glass 

eel data are presented as the average number of glass eels per haul in the months of April 

and May and is used as input for the demographic model (Chapter 4). 

 

8) Recreational landings Since 2010 a biennial survey has been conducted in the 

Netherlands to estimate the total eel catches in the recreational fisheries (Van der Hammen, 

2017, Van der Hammen in prep.). 

 
9) Transponder research Meuse The anthropogenic mortality of migratory silver 

eels in the Dutch rivers is determined by means of tracking silver eels equipped 

with a transponder. Within this transponder research, 150 silver eels are provided 

with a NEDAP transponder once every three years and released in the upper 

reaches of the Dutch part of the river Meuse. The data is used to estimate silver eel 

escapement in relation to anthropogenic mortality of silver eel by hydroelectric 

power stations. Unfortunately, data from the last field season (2019) could not be 

used due to database crashes at NEDAP and damaged detection stations. 

 
10) Diadromous fish monitoring programme A survey programme started in 2012 

to monitor the abundance of migrating silver eel on five exit points 

(Kornwerderzand sluices, Den Oever sluices, North Sea Canal, New Waterway 

channel, Haringvliet-West inlet) and two entry points for migratory fish (River 

Rhine and River Meuse) during spring and autumn. The programme is a 

collaboration between WMR, Rijkswaterstaat and commercial fishermen. The 

months September, October and November were selected for illustrating trends in 

silver eel abundance at each location. Because the indices are short (9 years), did 

not run before the implementation of the EMP and there are missing years, the 

monitoring is not used in the evaluations, but the trends are reported in Appendix 

C5. 

 

2.2 Biological Data 

Biological keys, such as maturity-at-length, weight-at-length, age-at-length, and sex-ratio-at-length are 

estimated with the available data from biological market samples. The biological keys are used in the 

assessment in the static spatial model and in the demographic model to convert lengths to ages or to 

yellow and silver eel biomass (Chapter 3, 4 & 7). The biological keys were based on all sampled eel, 

which is assumed to result in estimates representative for a national eel population. The biological keys 

that are presented in this chapter differ from previous years (van de Wolfshaar et al, 2018), because 1) 

more biological data became available since the previous assessment and 2) some keys were calculated 

with a different method. 

 

The data used to calculate the biological keys are measurements from eels that were taken from 

commercial catches (i.e., ‘market samples’) throughout the Netherlands (van Keeken et al. 2018). In 

addition, for the estimation of the age-at-length key, otolith readings from the DAK project (‘Duurzaam 

Aalbeheer door Kennis') are added to the otolith readings from the market samples. In total > 12,000 

individual eels collected from the commercial catches between 2006-2020 were used to assess the 

biological keys. From 693 individual eels sampled between 2009-2019 (573 from market sampling, 120 

from the DAK project) the otoliths were analyzed to assess the interannual growth increments. From 

these increments, the ‘years after arrival’ at the coast can be calculated. This differs from age, because 

the glass eel has already reached an age of 2-3 years before arriving at the coast. In eel research, ‘age’ 

usually refers to the age after arrival at the coast. In this report, ‘years after arrival’ and ‘age’ both refer 

to the age after arrival at the coast. 
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2.3 Sex ratio at length 

Males and females have different growth rates and male eel mature and migrate to the sea at smaller 

lengths and at younger ages compared to females. Consequently, sex ratio is expected to vary with 

length. In the previous assessments a linear relationship was assumed. Because the real relationship is 

unknown and unlikely to be linear, in this assessment the length-sex ratio relationship was estimated by 

fitting a GAM (Figure 2-1). A GAM does not have a fixed shape and can therefore be used to fit a non-

linear relationship. Sex ratio as a function of length was assessed for lengths of 28 cm and larger, 

because determination of the sex is usually not possible  at small lengths and there was insufficient data 

available at smaller sizes because of the minimal landing size of 28 cm. 

 
Figure 2-1 Percentage of females (dots) and GAM fit based on all samples (≥28cm) from the market 
sampling program 2006-2020 per 10mm length class. N (males) = 2,409, N (females) = 10,172. 

 

2.4 Maturation at length 

Males become silver eel at smaller sizes than females. Because most eel start their migration to the sea 

directly after silvering, most of the silver eel that are seen in the catches represent the eel that became 

silver eel only recently. It is also difficult to assess if the catches are representative for the proportion of 

silver eel in the stock, because of the timing of the main fisheries. In general, larger numbers of silver 

eel are caught during the silver eel migration period. Because of the three months closure of the fishery 

during the silver eel migration (September-November) since 20091, the sampling of the commercial 

catches could result in an underestimate of the proportion of silver eel in the stock at the start of the 

migration season for the years after 2009. However, market sampling during the migration season could 

result in an overestimate of the proportion of silver eel as they have higher catchability (in the passive 

gears) due to increased mobility. In addition, at downstream locations, the silver eel in the catch may 

originate from upstream locations, which could cause an overestimate of the proportion silver eel 

downstream and an underestimate upstream. These factors cause uncertainty of the maturity key, which 

is not taken into account for this report. Because the shape of the relationship between silvering and 

length is unknown, it was fitted with a GAM for both males and females (Figure 2-2). The analyses show 

that males start to silver at smaller lengths (~ 33 cm) compared to females (~ 50 cm). The GAM 

 
1 A pilot with decentralized, local eel management was conducted in the province of Friesland starting in 2011 and was fully 
implemented in the EMP in 2018, allowing fishermen in Friesland to fish during the closed season with a quota based on catches 
in 2010. 
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analysis (Figure 2-2) should be interpreted as the probability of becoming a silver eel at a certain length 

once that length has been achieved. For example, the ~60% for females at 100cm length does not mean 

that ~60% of the original number of females have already become a silver eel. Instead, an eel of 100cm 

length that has not yet matured has a ~60% chance of becoming a silver eel in the present year. In the 

previous reports (Bierman 2012, van de Wolfshaar et al., 2015 & 2018) the maturity key was fitted with 

logistic regression. The logistic regression fit should be interpreted as the proportion of eel that has 

become a silver eel at a certain length. However, because eel migrate from the system after becoming 

mature, this interpretation does not fit the data very well. The fit of the maturity key can have a large 

impact on the estimation of the proportion of eel becoming mature, especially in waters were eel are 

relatively large. 

 

Figure 2-2 Observations (circles, average per 10mm class) and predicted GAM fit (lines) of the 

percentage of silver eel per length class (10mm). Data source: market sampling program (2006-2020). 

a) males (N = 2,648), b) females (N= 10,311). 

 

2.5 Weight at length 

A length-weight (LW) relationship is used to estimate eel biomass given numbers-at-length. The length -

weight relationship is calculated for females and males separately, using individual length and weight 

measurements from market samples (Figure 2-3) and the standard LW relationship (weight = exp (-a+ 

b*log(Length)). In previous reports (Bierman et al. 2012 and van de Wolfshaar et al. 2015 & 2018) no 

distinction was made between males and females. For consistency with the other keys, the distinction 

was made for this report. However, for lengths <50 cm (which is more or less the maximum length of 

males), differences between males and females are very small and are not expected to make much of a 

difference. 

Figure 2-3 Length-weight relationship for eel based on market sampling data (2006-2020). N (males) = 

2,649), N (females) = 10,310. Estimated relationship for males: weight = exp (-13.53 + 

3.057*log(L)), for females: weight = exp (-14.71+ 3.247*log(L)). With weight in grams and length (L) 

in millimeters. 
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2.6 Growth 

As in previous assessments, growth is also analyzed for males and females separately. Growth 

increments were based on otolith readings from eels collected between 2009-2019 (Figure 2-4). 

Individual growth curves were constructed using the relative distances between annual growth rings and 

scaling these to the total length of the eel (van Keeken et al., 2011). For the determination of growth 

curves and ages, the protocols set by the ICES workshop in Age Reading of European and American Eel 

(ICES WKAREA, 2009) were used. For age 0, the mean length of glass eels arriving in Den Oever was 

used (7.1cm). The sex of glass eels is not determined yet and therefore no distinction could be made 

between glasseel that would become males or females. The sex specific growth curve was constructed 

using a von Bertalanffy Growth fit (VBLG, Figure 2-4). The estimated growth curves are used in the 

demographic model as the annual transition rates between length classes. The VBLG fit differed from the 

previous used growth curve, where a cumulative growth fit was used (Bierman et al. 2012 and van de 

Wolfshaar et al. 2015 & 2018). The VBLG was chosen because it reflected the data better compared to 

the cumulative growth. 

Figure 2-4 Eel growth. Grey lines indicate growth trajectories of individuals based on increments, dark 

grey dots are final length and age estimates (age after arrival at the Dutch coast) at the time the eel was 

caught. Blue lines: estimated growth using a von Bertalanffy fit. a) Males (N=288), b) females (N=187). 

 

2.7 Natural Mortality  

Natural mortality is a difficult parameter to assess. It depends on many factors, such as predation, water 

temperature and food availability. The natural mortality used in the demographic model (Chapter 3) is 

set to µ= 0.138 (per year) for all ages and lengths. This estimate is based on Dekker (2000), who made 

a best guess based on literature and is also used in other eel models (van der Meer, 2009). However, the 

above mentioned factors cause the value of natural mortality to be highly uncertain. 

 

2.8 Landings per stage and period 

Reporting of landings only became obligatory after the EMP came into place (end of 2009). Therefore, for 

the first period (2006-2008) a reconstructed estimate made by the ministry (Ministry of Agriculture, 

Nature and Food quality (LNV), 2009, 2018; Table 2-1) was used, 805 tonnes (525 tonnes yellow eel and 

280 tonnes silver eel). For the second period (2009-2011) the average amount of reported commercial 

catches for 2010 and 2011 were used (410 tonnes, Ministry of LNV), because the data for 2009 were 

incomplete. For the other periods (2012-2014, 2015-2017, 2018-2020), an average estimate of the 3 

years within the respective periods was calculated from the reported landings (Table 2-1). The catch was 

split into yellow and silver eel based on the length frequency distribution, the sex ratio, maturation and 

the length-weight relationship (see paragraphs above). This resulted in an estimate of 56% yellow eel in 

biomass of the total amount of retained catches in the Netherlands. Recreationally retained freshwater 

catches were available biennially starting in 2010 (Van der Hammen, 2017, & van der Hammen in prep). 

Therefore, for the first period (2006-2008), the estimate that was also used in the EMP was used (200 

tonnes, Ministry of Agriculture, Nature and Food quality, 2009). For the other periods, the estimates from 
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the biennial survey were used. For 2012-2014, two estimates were available, from which the average 

was taken. It is assumed that the recreational catches consist only of yellow eel2. The sum of retained 

commercial and recreational catches decreased from 2006-2008 to 2015-2017, but increased from 2015-

2017 to 2018-2020 (Table 2-1). This increase is mainly caused by an increase in landings in lakes 

IJsselmeer and Markermeer, while most other areas did not show such an increase (Appendix A0). 

 
Table 2-1 Overview of average yearly fresh water commercial and recreational retained catches 
(landings) in tonnes for each period.  

 Commercial Recreational Total 

Period Total Yellow 
eel 

Silver 
eel 

Yellow 
eel 

Commercial + Recreational 

2006-2008 805 525 280 200 1005 

2009-2011 410 234 175 75 485 
2012-2014 327 187 140 36 363 
2015-2017 334 191 143 10 344 

2018-2020 469 268 201 10 479 

 
  

 
2 Recreational fisheries consist of > 95% of angling. As silver eel do not feed, likely that anglers catch mostly yellow eel. 
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3 A static spatial model for yellow and silver eel  
 

3.1 Introduction to the model 

Only the main rivers (Rhine, Waal, Meuse and IJssel) and the large lakes (IJsselmeer, Markermeer, 

Grevelingen and Randmeren) are managed at a national level (Figure 3-1). All other water bodies are 

managed regionally by the water boards. A consequence of this management system is that the 

monitoring of nationally and regionally managed water bodies differs significantly.  

 

The regionally managed water bodies make up around 65% of the total freshwater surface area in the 

Netherlands (PBL, 2010). These waters are surveyed in a standardized manner since the implementation 

of the European Water Framework Directive (WFD) in 2000 (2000/60/EC). The nationally managed rivers 

have been monitored in a standardized manner since 1997. Both the regionally managed water bodies 

and the nationally managed rivers are monitored with an electric dipping net in the riverbanks. 

 

For the (nationally managed) large lakes (IJsselmeer, Markermeer, Grevelingen and Randmeren) good 

quality survey data were either not available (Grevelingen) or considered unsuitable for the methods as 

used for the regionally managed waters or nationally managed rivers. Therefore, stock estimates for the 

large lakes were based on a different estimation method (a demographic model, see Chapter 4).  

 

With the exception of the large lakes, the standing stock of both regionally and nationally managed 

waters was estimated by a swept area estimate. This is a simple method were eel density is multiplied 

with the water surface area. To calculate eel density, three estimations are needed: (1) the survey 

density (or catch success) of yellow and silver eel in a survey, (2) the catch efficiency of the survey gear 

and (3) the habitat distribution of eel at the survey locations (% eel in the shore versus % eel in the 

open water). The survey density (catch success) is estimated based on the catches (number/ha) in the 

survey per length class. This was subsequently translated into silver eel and yellow eel based on a 

maturity-at-length key, a weight-at-length key and a sex ratio key (Chapter 2). Subsequently, the 

standing stock was estimated for three scenarios, with different assumptions on the catch efficiency of 

the survey gear and the spatial distribution of eel in the water body. In this chapter, these scenarios will 

first be described. Then, the estimations of survey density for the regionally managed waters and for the 

nationally managed waters will be presented and subsequently biomass estimates for these three 

scenarios will be presented. These estimations are used as input for the Dutch eel stock biomass 

estimation (Chapter 5).  
 

3.2  Three scenarios for the static spatial model 

Standing stock estimates for three scenarios that differ in catch efficiency of the electric dipping net and 

habitat preferences were calculated to account for the major uncertainty. 

 
3.2.1 Catch efficiency 

The catch efficiency of survey gear is difficult to assess. Also, the catch efficiency of the electric dipping 

net depends on the type of water body, the substrate, the time of day, the settings of the gear and the 

experience of the staff operating the gear (Beaumont et al., 2002). Estimates of catch efficiencies of eel 

by electrofishing gear are scarce in the scientific literature. Naismith & Knights (1990) assumed a catch 

efficiency for eel using electrofishing gear of 27% in a river, whereas Baldwin & Aprahamian (2012) 

estimated efficiencies of approximately 60% in small rivers. Aprahamian (1986) showed size-selective 

effects of electrofishing, with mean probabilities of capture from 36% for the smallest eels to 59% for the 

largest. Carrs et al. (1999) reported estimated capture probabilities of 71.5% and 75.1% for lakes and 

streams, respectively. Belpaire et al. (2018) in an evaluation of the Belgian eel management plan 

assumed catch efficiencies of 66%. 
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3.2.2 Habitat preference 

Monitoring with an electric dipping net in rivers is usually done near the shore. However, the distribution 

of eel is not equal between the shore and the open water. This habitat preference is important to 

consider when scaling biomass at the borders of a water body to the biomass for an entire water body. 

Eel may prefer the littoral (‘inshore’) over the open water (‘offshore’, e.g. Jellyman & Chisnall, 1999;, 

Schulze et al., 2004). Therefore, a correction was used to account for differences in eel density between 

the littoral zone and the open water.  

 

The distribution of eels in lakes and rivers is generally thought to depend on the physical and biological 

characteristics of each water body. Literature on how eel is distributed over a water body is scarce and 

focuses on the relation between eel density and the distance to the shore, mainly in lakes. Contradicting 

results were found for lakes; Chisnall & West (1996) found that eel densities offshore in New Zealand 

lakes were on average 40% of those inshore; Schulze et al. (2004) found a decrease in number with 

water depth for a reservoir, but did not take the distance to shore into account; Jellyman & Chisnall 

(1999) and Yokouchi et al. (2009) found a positive relationship between catch per unit effort (CPUE) and 

proximity to the shore. Several others, more-recent studies have found contradicting results for the 

depth and distance to shore occupation of eels in lakes and estuarine environments (Walker et al., 

2014;, Barry et al., 2016;, Bašić et al., 2019). Matsushige et al. (2020) found four different rivers 

habitat preferences of Anguilla japonica that suggested diversification of habitat with growth and that 

differences in the preferred substrate type depended on body size at the channel scale within these river 

systems. Despite the contradicting results, the estimated eel densities in habitats that resemble lakes 

and rivers in the Netherlands tend to be higher near shore compared offshore. Therefore, this is also 

assumed to be the most likely scenario for the Dutch national waters. 

 

In the EMP’s of some of the countries neighboring the Netherlands, different assumptions were made. In 

Belgium, the density of eels is also assumed to be highest near the shores. To estimate the offshore 

density, they multiply the inshore density with the outcome of a cumulative Gaussian distribution of the 

difference between half of the river width and half of the transect width (Stevens et al., 2013; Belpaire et 

al., 2018). In France, no difference is made between inshore and offshore areas in rivers given the lack 

of evidence otherwise (Briand et al., 2018).  

 
3.2.3 Three scenarios 

Estimates of eel standing stock were computed using three different scenarios that differ in catch 

efficiency of the electric dipping net and in the habitat preference (Table 3-1).  

 

In scenario 1 a high catch efficiency (66%) and low proportion of eel in the offshore area compared to 

the inshore area (33%) is used (Table 3-1). As a consequence, this scenario will lead to the lowest 

estimated standing stock of eel. In scenario 2 the catch efficiency of the survey gear is assumed to be 

20% (following an EU certified protocol, STOWA Handboek Visstandbemonstering 2003) and the 

proportion of eel in the offshore area compared to the inshore area is assumed to be 50% (Table 3-1). 

This scenario leads to an intermediate estimate of the eel standing stock. In scenario 3, the same 

estimate for catch efficiency is used as in scenario 2 (20%), but the proportion of eel in the offshore area 

compared to the inshore area is higher (66%). Scenario 3 will therefore lead to the highest estimate of 

the standing stock. Scenario 2 is the best guess estimate. All final calculations will be made with scenario 

2, unless stated otherwise (Table 3-1). 

 

 
Table 3-1 The three main scenarios used in the approach to stock assessment in which survey data are 
scaled to wetted areas. A best guess of 20% for catch efficiencies was used with an upper limit of 66%. 
Densities in areas of water bodies outside 1.5 meters of the shore/bank (“offshore area”) were assumed 
to be either 33%, 50% or 66% of densities within 1.5 meters of the shore/bank (“inshore area”).  

 Density “offshore” compared to “inshore” 

Catch efficiency 33% 50% 66% 

66% Scenario 1   

20%  Scenario 2 Scenario 3 
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3.3 Regionally managed water bodies 

3.3.1 GIS data 

The eel biomass in the regionally managed water bodies was assessed in the same way as presented in 

previous reports (Bierman et al, 2012; van de Wolfshaar et al, 2015 & 2018). It is based on the WFD fish 

monitoring program and detailed GIS maps. The management of WFD waters is executed by 21 so-called 

water boards (Figure 3-1). In the Netherlands, all WFD surface waters are assigned to a waterbody type, 

ranging from small ditches to large lakes (Table 3-3). Detailed information per waterbody is obtained 

from a publicly available GIS map with polygons and line elements of all WFD surface waters in the 

Netherlands (Figure 3-1). The spatial information of the WFD waterbodies in these GIS maps makes it 

possible to calculate the area of each type of surface water (van Puijenbroek & Clement, 2010). 

 

Figure 3-1 Left: the 21 water boards that are in charge of the regional management of WFD waters in 
the Netherlands (left). Right: The WFD waterbodies (dark blue) and the nationally managed waters (light 
blue). 

 
3.3.2 Data availability 

 

WFD waters 

Eel monitoring within the regionally managed WFD waters was executed with an electrofishing gear, 

following an EU certified protocol (STOWA Handboek Visstandbemonstering 2003). Sampled waterbodies 

are expected to be representative for water types as defined in WFD regulation. Water boards are 

obliged to sample their WFD waters within a time frame of six years, resulting in a different sampling 

scheme for each waterboard. Most water boards sample a part of their area every year, while others 

sample a large area within one year, but do not sample every year. Data availability on a yearly basis is 

thus not necessarily expected. In this report, the following approach was used to select the periods. To 

reduce the variation due to unbalanced sampling, a moving average of six-year periods was chosen to 

assess the biomass of eel for the different three-year periods. For the three-year periods in this report, a 

six-year period starting two years before and one year after the corresponding three-year period was 

chosen, so that in total six years of data were used. Because data from before 2006 was not available, 

for the first period (2006-2008) data from 2006-2011 was used. Similarly, 2020 and 2021 data were not 

yet available from any water board due to the timing of the data request (spring-summer 2020). This 

early timing is necessary due to the time needed by some of the water boards to deliver the data and to 

process the data into the right format. Therefore, for the last three-year period (2018-2020), a six-year 

period starting in 2014 (2014-2019) was used. Because a six-year moving average was used, only the 

waterbodies that had at least one fishing event in each six-year cycle since 2009 were selected in the 
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analysis, in order to keep the data balanced between the three-year periods. However, the years before 

2009 were not used to select the waterbodies included in the analysis, because in these years sampling 

intensity was much lower and this would result in too much data loss over all years. This results in that 

the first period (2005-2008) is based on fewer waterbodies than the other periods, whereas the other 

periods have the same waterbodies included in the analysis. In addition, some WDF data could not be 

used in the analysis for different reasons. For example, many of the regional waters of water board 

“Scheldestromen” are brackish, and therefore there was hardly any electrofishing data in this 

waterboard. Data for water board “Hollandse Delta” is missing for the period 2014–2020 and could 

therefore also not be used for the other years due to the selection criteria (Table 3-2). 

 

Table 3-2 Data per water board per year which were used for the analysis of the standing stock of eel in 
WFD water bodies (white numbers); white boxes represent missing/not available/incomplete data; blue 
boxes with a zero represent that data was available, but could not be used due to the selection criteria 
(see text). 

Water board 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Aa en Maas   2   55     66 3   27 1 48 32 27 

Brabantse Delta 13 7 52 0 54 65 23 51     74 30 29 71 

De Dommel 27 12   51 16 34 35 25 27 66 3 40 34 56 

Drents Overijsselse Delta 19 50 5 5 5 44   8 41 35   63 6 39 

Hollandse Delta 0             0             

Hoogh. Amstel, Gooi en Vecht 176 10 16 21 56   140 184   31 71 65 35 102 

Hoogh. De Stichtse Rijnlanden 17     19 5   19 22   20 5   19 24 
Hoogh. Hollands 
Noorderkwartier     9 38 14 77     11 20 35 8 59 70 

Hoogh. van Delfland     4     54 26   32 29   35 29   

Hoogh. van Rijnland 4     7 18 27 11 9 71 4 5 73   43 
Hoogh. van Schieland en de 
Krimpenerwaard 10 16 11 52 14 25 41 13 59 50 14 52 55 17 

Hunze en Aa's    33 23     46 43 75 18 32 38 47 29 55 

Limburg   5 24   20 8 17 18 33 35 8 41 31 17 

Noorderzijlvest       48 22 60 23 34 31 23 39 50 25 50 

Rijn en IJssel 65 18 29 2 26 34 23 32 25 19 19 27 26 35 

Rivierenland   46   152 116   99   165       239   

Scheldestromen                       0 0 0 

Vechtstromen   77 13   74 32 17 54 29 45 84 1 5 60 

Vallei en Veluwe     11 68 16 33 48 38 59 49 52 73 59 77 

Wetterskip Fryslãn 17     49     55     63     57 28 

Zuiderzeeland         0     6           6 

Number of fishing events 348 276 197 567 456 543 686 572 601 548 448 653 770 777 

 

 

Sampling locations were included if they were located within WFD waterbodies (polygons) or 50 meters 

from a line element as defined in the available GIS map. A margin of 50 meters from a line element was 

assumed to be reasonable since waterbodies having a width of about 100 meters were defined as line 

elements in the GIS map. To link the electrofishing sampling locations to the GIS map, the geographic 

coordinates of the electrofishing events were used. Firstly, coordinates which fell into a polygon were 

assigned to that polygon. Secondly, for the fishing events which could not be assigned to a polygon, each 

was assigned to the nearest line segment if this was within the margin of 50 meters from the sampling 

location. Thirdly, for all remaining fishing events without a match, based on the above-mentioned 

statements, the waterbody identification code was used to find a match. However, this last attempt to 

link a fishing event with a waterbody resulted in only a few matches since different identification 

codes/names are in use for a single water body, and might change over time (e.g. after a fusion between 
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waterboards). The remaining fishing events after this last step were excluded from the analyses as a 

result of lacking information. Finally, only the selected fishing events, in which the sampled area was 

known, were used for the analysis. In total, the selection method resulted in 7,442 electrofishing events 

in 533 water bodies being included in the eel assessment for regionally managed WFD waters (Table 3-2; 

Figure 3-2). 
 

The variability in sampled area is large between the different water types (Table 3-3, see Appendix A1 

for a description of each water type). The two water types with the largest surface area (M14 and M27, 

both shallow, relatively large lakes, with 28% and 30% of the total surface area, respectively) have a 

relatively low sampling intensity. The highest sampling intensity (M3 with 17% of the sampling effort and 

R5 with 22%) has been applied to water types with a relatively small surface area (4% and 2%, 

respectively). Nevertheless, most of the small ditches (M1a and M2) in the Netherlands are not even 

assigned as a WFD waterbody and were thus not included in the WFD sampling program. Those non-WFD 

ditches cover a large area of > 59,000 hectares in total (Table 3-3, ‘Non-WFD ditches’) and can 

subsequently contribute significantly to the standing stock of eel. In order to include these ditches, 

information of an additional fish sampling (“Polderbemonstering”) within these non-WFD water bodies 

was incorporated to estimate the total biomass of eel in ditches (van Keeken, 2014a & 2014b). 

 

 

Figure 3-2 Geographical location of fishing events in WFD waters included in the analysis for two different 
periods (six year cycles), 2008-2013 and 2014-2019. The density (kg/ha) is indicated by the different 
colors, ranging from 0 (yellow) to >50 kg/ha of eel (red). 

 
3.3.3 Non-WFD waters (ditches) 

Eel monitoring of non-WFD ditches was also executed with an electronic dipping net, following the same 

protocol as the WFD sampling program. Each year, from 2013 onwards, several ditches within a selection 

of water boards were sampled in a way which would  be representative for each waterboard. Most small 

ditches can be found in the lower parts of the Netherlands (“Polders”). Therefore only 14 out of the 21 

waterboards were included within this additional sampling program. In total, 350 electrofishing events 

were executed, whereby an area of 12.4 hectares was sampled in non-WFD ditches (Figure 3-3) and 

included in the eel assessment for regionally managed waters. Except for the first two years (2013-2014) 

of the program, in which the sampling was conducted in (early) summer, the ditches were sampled in 

September.  

 



27 van 97 Report CVO 21.023 

 

 

Figure 3-3 Geographical location of fishing events in non-WFD waters included in the analysis for all 
years within 2013-2020. The density (kg/ha) is indicated by the different colors, ranging from 0 (yellow) 
to >50 kg/ha of eel (red). Water boards included in this additional program are: Brabantse Delta; 
Hollandse Delta; Hoogh. Amstel, Gooi en Vecht; Hoogh. De Stichtse Rijnlanden; Hoogh. Hollands 
Noorderkwartier; Hoogh. Van Delfland; Hoogh. Van Rijnland; Hoogh. Van Schieland en de 
Krimpenerwaard; Hunze en Aa’s; Noorderzijlvest; Rivierenland; Scheldestromen; Vallei en Veluwe; 
Wetterskip Fryslãn. 

 
3.3.4 Standing stock estimation 

For each fishing event, the number of eel per length were converted to weight by making use of a 

length-weight relationship (Figure 2-3), from which the survey density of eel (in kg/ha) was calculated. 

Densities were corrected for the assumed catch efficiency of the electric dipping net (see Paragraph 

3.2.3). Water surface area was divided into two areas: littoral zone (inshore) and open water (offshore). 

The width of the littoral zone was set equal to the reach of the dipping net (1.5 meters) and its surface 

area is the width times the bank length. The open water surface area is the total surface area minus the 

surface area of the littoral zone. Eel density outside the littoral zone is assumed to be a fraction of that in 

the littoral zone (50% for scenario 2). Subsequently, density is converted to absolute biomass (kg) for 

the riverbank and open water surface areas separately. Biomass of silver eel and of all eel (≥ 30 cm) is 

estimated according to scenario 2 (Table 3-8).  

 

For upscaling to the total biomass in regional waters, the surface area of each water type was used to 

estimate the total biomass (in tonnes) of eel (≥30 cm), yellow- and silver eel combined) and silver eel 

(≥30 cm) for each water type. Based on 1) the female:male ratio (Figure 2-1) and 2) the maturity at 

length for both males and females (Figure 2-2), the density and biomass of silver eel was estimated. For 

water types that were not sampled in a six year-period, the density averaged over all water types was 

used to estimate biomass of eel and silver eel for these waters without data. For the additional sampling 

in ditches, the same methodology was used to estimate production and total biomass of eel and silver eel 

within these waters.    

 

 
3.3.5 Standing stock per WFD water type 

The density and biomass of eel and silver eel per water type was estimated for all defined six-year 

periods, so that each estimate covers a full sampling cycle of six years. The result of the latest six-year 

period (2014-2019) is presented in Table 3-3. Following scenario 2 (Table 3-1), a total biomass of 1,791 
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tonnes of eel (≥ 30 cm) was estimated, of which 399 tonnes silver eel, in regionally managed WFD water 

bodies. The highest survey densities were estimated for the R14 (22.1 kg/ha) and R18 (19.5 kg/ha) 

water types. However, the surface area of these waters is very small and the contribution to the total 

biomass is limited (Table 3-3). Contribution of M14, M27 and M20 waters to the total biomass of eel and 

silver eel was estimated to be the highest, mainly because these water types have a large surface area 

(Table 3-3). The estimated biomass of eel in WFD waters (1,791 tonnes) combined with an estimated 

biomass of 981 tonnes (survey density 3.8 kg/ha) for eel in non-WFD waters resulted in a total 

estimated biomass of 2,773 tonnes of eel in regionally managed waters for the period 2014–2019 (Table 

3-3). The total biomass estimate of silver eel in regionally managed waters for the period 2014–2019 

was 584 tonnes (Table 3-3). Similar density and biomass estimates were done for the other periods 

(Appendix A3). 

 

Table 3-3 Estimation of the eel survey density and biomass per WFD water type for the period 2014 – 
2019 following scenario 2. Production and biomass estimates were done for yellow and silver eel 
combined (≥ 30 cm) and for silver eel (≥ 30 cm) only. For a full description of the WFD-water types, see 
Appendix A1 and for the biomass of eel (≥ 30 cm) per period see Appendix A2. Note that survey density 
is not the density in the lake, but the ‘catch success’ in the survey. This value is corrected for selectivity 
of the gear and the ratio between the inshore and offshore area to calculate the total biomass. 

              All eel (≥ 30 cm) Silver eel (≥ 30 cm) 

WFD 
water  

Description of WFD water types Total 
area (ha) 

Swept 
area 
(ha) 

Survey 
Density 
(kg/ha) 

Biomass 
(tonnes) 

Survey 
Density 
(kg/ha) 

Biomass 
(tonnes) 

M1a Buffered ditches 
  

156 11.09 0.4 0.3 0.1 0.0 
M2 Weakly buffered ditches 10 1.48 3.9 0.2 1.9 0.1 
M3 Buffered canals 3,324 67.51 1.3 13.3 0.4 3.8 
M6a Large shallow canals (shipping) 603 14.32 7.6 13.7 2.4 4.3 
M6b Large shallow canals  1,780 7.7 4.8 25.0 0.8 3.9 
M7a Large deep canals (shipping) 13 0* 7.0 0.3 1.7 0.1 
M7b Large deep canals 3,435 11.77 9.8 91.6 2.3 21.0 
M8 Buffered peatland ditches 1,148 11.06 0.1 0.2 0.0 0.1 
M10 Peatland canals 1,362 32.66 1.9 9.2 0.3 1.6 
M14 Shallow, large, buffered lakes 20,902 31.58 17.6 936.3 4.5 240.3 
M20 Deep, large, buffered lakes 4,444 3.25 11.1 125.5 2.3 26.4 
M23 Shallow, large, calcium rich lakes 90 0* 7.0 1.7 1.7 0.4 
M27 Shallow, large, peatland lakes 22,738 22.89 6.5 372.7 1.0 56.6 
M30 Weakly brackish waters (0.3 – 3 g Cl/l) 8,182 6.43 1.3 27.0 0.3 6.1 
R4 Slow flowing, upper stream on sand 73 14.42 0.4 0.1 0.1 0.0 
R5 Slow flowing, lower stream on sand 1,221 81.11 1.7 7.5 0.3 1.6 
R6 Slow flowing small river on sand/clay 3,414 34.37 12.7 114.1 2.4 21.2 
R7 Slow flowing side stream on sand/clay 2,272 3.16 7.9 45.3 1.6 9.4 
R8 Fresh tidal waters on sand/clay 20 1.05 5.6 0.3 2.4 0.1 
R12 Slow flowing lower stream on peat 65 3.70 3.5 0.8 0.9 0.2 
R13 Fast flowing upper stream on sand 4 0* 7.0 0.2 1.7 0.0 
R14 Fast flowing lower stream on sand 16 0.93 22.1 1.3 5.5 0.3 
R15 Fast flowing small river (siliceous) 37 0* 7.0 0.8 1.7 0.2 
R17 Fast flowing upper stream (calcium) 7 0* 7.0 0.3 1.7 0.1 
R18 Fast flowing lower stream (calcium) 52 1.44 19.5 3.7 4.6 0.9 
Total 

  
   75,368  361.9  1,791.4   398.7 

Non-WFD ditches 
  

   59,441  12.4 3.8  981.2  0.7 185.3 

TOTAL 
  

   134,809 374.3  2,773  584 

* For those water types were no survey was conducted, the average survey density of all water types was assumed. 
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3.3.6 Biomass per period and scenario 

Three different scenarios (Table 3-1) were used to estimate the eel biomass, based on different values of 

catch efficiency and different ratios between eel densities at the inshore and offshore areas. Eel biomass 

estimates vary between scenarios, with scenario 1 providing the lowest and scenario 3 the highest 

estimate of eel biomass (Table 3-4). In addition to the different scenarios, estimates were made for the 

different periods and for all data combined. The difference in the biomass estimates between the periods 

is large. Biomass estimates for the first and the last period were the lowest, while the highest estimates 

were seen for the periods 2009–2011 and 2012-2014. Although the estimates are made for a six-year 

period and only from waters that are sampled at least once in each such period, with an exception of the 

first period, the differences can still reflect (to some degree) an unbalanced sampling. If the same 

waterbody is sampled at least once in each period, it can still be sampled on a different location within 

the waterbody or by a different person, which can cause some variation. In addition, although six years 

of data (2006-2011) was used for the estimate of the first period (2006-2008), it still had lower sampling 

effort compared to the sampling effort in the later periods. This was not the case in the latest periods, 

where a decline is observed. The last two periods had nearly an equal sampling effort and the same 

waterbodies were included in the analysis. Therefore, the difference in estimated biomass of eel in these 

last two periods (2015-2017 and 2018-2020) compared to the period before (2012-2014), reflects a 

lower estimate in the standing stock of eel in regionally managed waters.  

 

Table 3-4 Estimates of standing stock of eel in tonnes in the regionally managed waters (WFD water 
bodies) and non-WFD water bodies; all eel (yellow and silver ≥ 30 cm) and silver eel (≥  30 cm) biomass 
estimates for three periods (and all years combined for the Non-WFD waters) for the three scenarios. 

    
Non-WFD 
waters WFD water bodies 

  Scenario All years  2006 – 2008* 2009 – 2011* 2012 – 2014* 2015 – 2017* 2018 – 2020* 

Eel ≥ 30 cm 1 283 406 664 776 464 369 

 2 981 1,947 3,236 3,793 2,265 1,791 

 3 1,024 2,519 4,219 4,953 2,955 2,331 

Silver eel ≥ 30 cm 1 54 69 109 200 148 82 

 2 185 328 529 984 727 399 

 3 193 424 689 1,289 952 519 
* these are the three-year periods. Each estimate is based on the nearest six-years of data. Period “2006-2008”: data from 2006-2011; Period “2009-2011”: 
data from 2007:2012; Period “2012-2014”: data from 2010:2015; Period “2015-2017”: data from 2013-2018;Period “2018-2020”: data from 2014:2019. 

 
 

3.3.7 Discussion 

There are some limitations in the data availability concerning the regionally managed waters. The first 

issue is that not all water boards sample at least once every three years. Water boards are obliged to 

sample their WFD waters within a time frame of six years, resulting in a different sampling scheme for 

each water board. In addition, due to the timing of the data request, the data of 2020 was not yet 

available from any water board. A second issue concerning the WFD sampling program is that the 

sampling intensity was not well-balanced. Water types with the highest surface areas have relatively low 

sampling effort, while the highest sampling effort was performed in water types with relatively (very) low 

surface areas. A six-year moving average was chosen here, such that a trend can be estimated and 

changes in eel abundance over time are accounted for. By calculating a six-year moving average, a trend 

is estimated that takes a great part of the unbalanced sampling into account. For the last two periods, 

nearly all water types were sampled with sufficient sampling effort. However, especially in the first 

period, there was less sampling effort, which will have influenced the result. Another issue is that not 

every fishing event could be linked to a water body and these events had to be excluded from the 

analysis. This mismatch might be due to measurement errors with GPS equipment, errors during data 

entry or the selection method of sampling locations used in this analysis. This resulted 3,704 of the 

fishing events out of 12,518 having to be removed. As in previous reports, three scenarios were used for 

catch efficiency and spatial distribution of eel within a habitat, which pose issues that remain problematic 

and cause a high level of uncertainty in the absolute biomass estimate (Table 3-4). Variation in the 
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biomass estimates in some waters, may also be a result of stocking activities. This is not a problem for 

the biomass estimation in this evaluation, because stocked eel are included in the biomass estimates. 

However stocking may cause large variation in eel biomass in the waterbodies were eel is stocked over 

the years. Finally, the usage of a new set of biological keys influenced the estimates of yellow and silver 

eel in the regionally managed waters (see Chapter 2).  

 

In the non-WFD waters (ditches), the sampling scheme was standardized for sampling method, but not 

for sampling location (Paragraph 3.3.3). Each year, two different waterboards were selected and within a 

given waterboard and only a very small subsample of all ditches was monitored. As a result, only one 

single estimate of the non-WFD waters could be conducted over the whole time period. Any variation in 

time can therefore not be detected, because the variation between locations is assumed to be higher 

than between years within the same location.  

 

3.4 Nationally managed water bodies 

3.4.1 Data availability 

Within the survey program “Fish Monitoring National Waters”, fish species in the main Dutch rivers are 

monitored yearly (van Keeken et al., 2020a). In the program, the main rivers and the water bodies 

connected to them are sampled in autumn or early spring (Table 3-6). Six of the twelve regions have 

been sampled consistently and yearly since 1997 (Table 3-6). Within a region, sampling is usually 

consistently undertaken in the same month(s) of each year, but different regions are sampled in different 

months. There are also regions which started to sample later than the first period considered here 

(2006-2008), which have some missing years or which do not sample yearly. Consequently, in some 

waters, data is not available for every year within the three-year periods that are considered in this 

report. For example, Volkerak-Zoommeer has not been sampled in 2018 and 2020 and the latest 

estimate in this water is based solely on samples from 2019 (Table 3-5). 

 

Table 3-5 Number of hauls per year per region per habitat (main or connected water). 

 

Due to Covid-19 restrictions, some (parts of) regions were not sampled in 2020. These include some 

stations in the upper reach of the River Gelderse IJssel, all stations in the River Rijn (both part of the 

Gelderse Poort region) and all stations in the Zandmaas (North and South). See Figure 3-3 for the 

classification of regions and Table 3-6 for an overview of survey details per region.  

 

In the large lakes (lakes IJsselmeer and Markermeer, Randmeren and Grevelingen) the relationship 

between the eel density inshore compared to offshore is even more uncertain because of the large area 

Region Habitat 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Benedenloop 
Gelderse IJssel  

Main 5 5 5 4 5 5 5 4 5 5 5 5 5 5 5 
Connected 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 

Benedenrivieren Main 31 31 31 30 31 24 21 21 21 21 21 21 21 21 21  
Connected 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Gelderse poort Main 22 26 25 27 28 29 28 14 14 14 14 15 14 14 10  
Connected 15 16 17 22 21 20 22 10 11 11 11 11 11 10 8 

Getijdenlek Main 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7  
Connected 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Getijdenmaas Main 5 5 5 5 10 11 11 8 8 10 8 8 8 8 9  
Connected 7 7 7 7 9 9 9 9 9 9 8 9 9 9 9 

Grensmaas Main 11 11 11 11 11 11 11 10 11 11 11 11 11 10 11  
Connected 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

Volkerak-
Zoommeer 

Main 0 0 9 0 9 0 0 9 0 0 9 0 0 9 0 

Zandmaas Main 0 0 4 4 4 5 6 0 0 4 0 3 4 4 0 

 Connected 0 0 7 7 6 7 6 0 0 7 0 2 8 8 0 
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offshore. Therefore, density estimates in lakes IJsselmeer and Markermeer from the demographic model 

are used as basis for these lakes instead (Chapter 4).  

  

Figure 3-4 Classification of the main rivers. Regions are represented by different colors.  

 
Table 3-6 Survey information per river region and type of water (main waterway or connected water 
body), for the years 2018, 2019 and 2020. Sampled years = the years in which a region has been 
sampled, where all = 2018+2019+2020. Survey density in riverbank = density for all eel ≥30 cm (yellow 
and silver). Survey density is based on data collected using an electric dipping net at the riverbanks. For 
this table, no correction for catch efficiency of the gear is made. 
Region Habitat Sampled 

years 

Sample 

period 

Survey density 

(≥30 cm) in  
riverbank (kg/ha) 

Benedenloop Gelderse IJssel main all Spring 1.38 
 connected   0.00 
Benedenrivieren main all Autumn 24.71 

 connected   0.00 
Gelderse Poort* main all Spring 1.46 
 connected   0.00 

Getijdenlek main all Autumn 11.86 
 connected   6.05 
Getijdenmaas main all Autumn 3.66 

 connected   1.25 
Grensmaas main all Spring 2.39 
 connected   0.00 

Volkerak-Zoommeer main 2019 Autumn 35.05 
Zandmaas* main 2018, 2019 Spring 1.80 

 connected   11.22 

*Due to Covid-19 restrictions, some (parts of) regions were not sampled in 2020: some stations in the upper reach of the river 

Gelderse IJssel, all stations in the river Rijn (both part of the Gelderse Poort region) and all stations in the Zandmaas (North 

and South). 
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3.4.2 GIS data 

Three types of geographical information were collected; surface area, bank length and groin length. The 

surface area (ha) and bank length (km) of the rivers and lakes were calculated (Table 3-7) using GIS 

data (the ‘Ecotopenkaart’ of Rijkswaterstaat3). For the rivers, additional information on bank length was 

collected (Table 3-7). In some parts of the rivers, the bank length is significantly larger than the river 

length because of groins (Dutch: ’kribben’) which are placed perpendicular to the riverbank. These groins 

are approximately 90 meters long and placed 200 meters apart (www.rws.nl). In the parts of the rivers 

with groins, bank length is thus approximately 1.9 times the river length. By visually scanning satellite 

images of Google Earth, a rough estimate of the percentage of riverbanks with groins was made: 60% of 

the Gelderse Poort is estimated to have groins, and 50% of the Getijdenmaas. The other regions are 

assumed to have no groins. The estimates used are the same as in the previous assessments (Bierman 

et al. 2012; van de Wolfshaar et al., 2015 & 2018). 

 

 
Table 3-7 Surface area, river length and bank length per river region. Groins = the percentage of a region 
that has groins. Bank length is river length with groins length (1.9 times the river length) included. 
Region Habitat Surface area  

(ha) 
River length 

(km) 
Groins Bank length  

(km) 

Benedenloop Gelderse IJssel main 675 118  118 
connected 271 42  42 

Benedenrivieren main 18,377 703  703 
 connected 1,670 498  498 
Gelderse Poort main 5,201 557 60% 858 
 connected 1,468 191  191 
Getijdenlek main 500 52  52 
 connected 78 19  19 
Getijdenmaas main 1,265 155 50% 224 
 connected 753 82  82 
Grensmaas main 426 135  135 
 connected 436 49  49 
Volkerak-Zoommeer main 4,814 171  171 
Zandmaas main 2,043 305  305 
 connected 1,413 160  160 

 

 
3.4.3 Biomass estimate 

Densities were corrected for the assumed catch efficiency of the electric dipping net (20% for scenario 

2). Water surface area was divided into two areas: littoral zone (inshore) and open water (offshore). The 

width of the littoral zone was set equal to the reach of the dipping net (1.5 meters) and its surface area 

is the width times the bank length. The open water surface area is the total surface area minus the 

surface area of the littoral zone. Eel density outside the littoral zone is assumed to be a fraction of that in 

the littoral zone (50% for scenario 2). Subsequently, density is converted to absolute biomass (kg) for 

the riverbank and open water surface areas separately. For the Grensmaas, no correction for habitat 

preference is made and density in the open water is assumed to be equal to that in the littoral zone, 

because sampling with the dipping net takes place in the open water in this (shallow water) region and is 

thus representative for the open water density. Biomass of silver eel and of all eel (≥ 30 cm) is 

estimated according to scenario 2 (Table 3-8).  

 

 

 

 

 

 
3https://maps.rijkswaterstaat.nl/dataregister/srv/dut/catalog.search#/metadata/8a2sa797-915t-mn3s-pwnr-va1luhr81fos 
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Table 3-8 Biomass (tonnes) of eel ≥ 30 cm, yellow eel and silver eel per river region, estimated 

according to scenario 2, for 2018-2020. 
 Biomass (tonnes) 

Region All eel (≥ 30 cm) Yellow eel (≥ 30 cm) Silver eel (≥ 30 cm) 

Benedenloop Gelderse IJssel 2.4 1.6 0.8 
Benedenrivieren 1,141.9 896.8 245.1 
Gelderse Poort 19.5 14.6 4.9 
Getijdenlek 16.3 13.8 2.5 
Getijdenmaas 14.3 10.8 3.5 
Grensmaas 5.1 3.3 1.8 
Volkerak-Zoom 424.1 315.7 108.4 
Zandmaas 49.7 24.6 25.1 

 

 

For scenario 2, estimated biomass of eel in the period 2018-2020 is also compared to the earlier periods 

(Figure 3-5;Table 3-9), showing that there does not seem to be a general biomass trend in all of the 

river regions. Most of the biomass can be found in the Benedenrivieren. After the steep increase of 

estimated biomass in 2015-2017 in most river regions, biomass estimates have decreased again to levels 

similar to those of 2012-2014 or lower. Exceptions are the Volkerak-Zoommeer, Getijdenlek and the 

Grensmaas regions. For the Volkerak-Zoommeer region, the biomass estimate from 2015-2017 was 

considerably lower than in 2012-2014 but has increased again in 2018-2020 to levels similar to those of 

2012-2014. For the Grensmaas River region, there seems to be a steep decline since the period 2009-

2011. For the Getijdenlek region, biomass estimates have increased from 2006-2008 to 2012-2014 and 

have remained relatively stable since then (Figure 3-5). 

 

 
Table 3-9 Biomass of eel ≥ 30 cm (yellow and silver) in tonnes per river region, for five 3-year periods, 
following scenario 2.  

Region 2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Benedenloop  

Gelderse IJssel 
13.8 1.4 4.2 19.0 2.4 

Benedenrivieren 311.0 412.8 908.0 2,147.0 1,141.9 

Gelderse Poort 8.8 29.7 26.0 93.4 19.5 

Getijdenlek 2.8 6.4 15.5 17.2 16.3 

Getijdenmaas 15.0 8.1 42.1 90.7 14.3 

Grensmaas 100.5 100.5 19.5 27.7 5.1 

Volkerak-Zoommeer 131.3 874.1 381.3 101.8 424.1 

Zandmaas 61.3 105.9 49.5 345.6 49.7 

Total 645 1,539 1,446 2,842 1,673 
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Figure 3-5 Biomass of eel ≥ 30 cm (yellow and silver) in tonnes per river region, for five 3-year periods, 
following scenario 2. 

 
When combining all the river regions, the estimated biomass for the period of 2015-2017 is the highest, 

followed by the most recent biomass estimate from 2018-2020. The biomass estimate of this latter 

period ranges from 337 tonnes for scenario 1 to 2,200 tonnes for scenario 3. The best guess scenario 2 

biomass estimate for all the river regions combined is 1,673 tonnes (Table 3-10).  

 

Table 3-10 Biomass of all eel and of silver eel (≥30 cm) in tonnes per river region, for five 3-year periods, 
following each scenario. 

    National water bodies 

  Scenario 2006 – 2008 2009 – 2011 2012 – 2014 2015 – 2017 2018 – 2020 

Eel ≥ 30 cm 1 141 320 293 577 337 

Eel ≥ 30 cm 2 645 1,539 1,446 2,842 1,673 

Eel ≥ 30 cm 3 815 1,993 1,896 3,725 2,200 
         
Silver eel ≥ 30 cm 1 29 43 54 133 79 

Silver eel ≥ 30 cm 2 134 200 266 654 392 

Silver eel ≥ 30 cm 3 168 255 348 857 515 

 
3.4.4 Discussion 

There are some shortcomings and uncertainties in the methodology used for the nationally managed 

waters. Various regions are not sampled every year or regions are sampled in different months, which 

adds uncertainty to the estimates. However, because each region is sampled within each three-year 

reporting period, uncertainty within each three-year is diminished. However, despite the good 

comparability of these periods, abiotic factors and sampling deviations could still have large effects on 

the catch efficiency and the biomass estimates. 

  

Another factor of uncertainty that can influence the biomass estimates is the lack of detailed information 

on the number and distribution of groins in the rivers. Here, we used a very coarse method to estimate 

that number per region. But probably the highest level of uncertainty due to insufficient knowledge of 

two crucial factors: the catch efficiency of the survey gear and habitat preference of eel. These factors 

cause a large variation in the biomass estimate. 
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3.5 Discussion regionally and nationally managed waters 

Concerning both the nationally and regionally managed waters, there are some uncertainties. As 

mentioned before, the most important uncertainty is because the selectivity of the electric dipping net 

and the habitat preference are highly uncertain, the biomass estimates of the WFD and non-WFD waters 

are also highly uncertain.  

 

A central assumption underlying the stock estimation is that the eels caught in a certain area represent 

the inhabitants of that area and that the eels do not move away from this habitat until they are silver 

eel. For the main passageway of silver eel to the sea (i.e., mostly through nationally managed rivers and 

lakes), this assumption entails much uncertainty. On the one hand, eels surveyed during the migration 

season in autumn (i.e., in many of the rivers; see Table 3-3) may partly consist of migrating silver eels. 

These eels were perhaps already surveyed in the habitats where they grew up (since areas are surveyed 

in different time periods), or these eels may have migrated from other countries after maturation to 

silver eel. This would lead to an overestimation of the silver eel stock in the Netherlands. Possibly, this 

could explain the high density estimates of the Benedenrivieren, which is the area closest to the coast 

where silver eel might concentrate just before and during the migration season.  

 

In contrast, monitoring during or directly after the migration period may lead to an underestimation of 

the silver eel stock, because some of the silver eel might have migrated away or might be in the parts of 

the water body not surveyed with the dipping net (e.g. the open water). Thus, because the main surveys 

in the nationally managed waters take place during the migration period, there is additional uncertainty. 

The same reasoning goes for the regionally managed waters surveyed during or following the migration 

period. However, with consistent survey periods, this is not expected to affect the trends in biomass 

estimates.  
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4 A demographic model for yellow eel 
 

4.1 Introduction to the demographic model 

A different method as used in Chapter 3 is used for the nationally managed larger lakes (lakes 

IJsselmeer, Markermeer, Grevelingen and Randmeren). The sampling with the electric dipping net occurs 

along the shore, and the assumed inshore:offshore density ratio used for the smaller water bodies is not 

suitable for the lakes because the lakes have a disproportionate amount of surface area compared to the 

shores. Moreover, the catchability of the FYMA survey, used to sample the offshore waters of the lakes, 

is unknown. Instead of an extrapolation of the survey data to the surface density, another method was 

therefore applied to estimate the eel biomass in the larger lakes IJsselmeer, Markermeer, Randmeren 

and Grevelingen. First, a demographic model was developed to estimate fishing mortalities in the lakes 

IJsselmeer and Markermeer, by fitting the model to relative changes in abundances observed in the 

survey. Subsequently, the estimated fishing mortalities were used to calculate the biomasses, based on 

the eel landings in the lakes (see Paragraph 4.10).  

 

In addition, the demographic model was also used in the calculation of one of the stock indicators, the % 

Spawner-Per-Recruit as a percentage of the best possible spawner-to-recruit ratio (%SPR, Chapter 7). 

The %SPR, is needed to calculate the total anthropogenic mortality rate (ΣA), which can be compared 

with the 40% escapement target of the Eel regulation. In that case, the demographic model was not 

parameterized for lakes IJsselmeer and Markermeer (Chapter 7). 

 

For lakes IJsselmeer and Markermeer, a demographic population model was used to estimate fishing 

mortality rates (𝐹) in four periods since 1989. The model estimates 𝐹 values and a glass eel to recruits 

conversion factor (𝐾) based on a fit of the abundance per age class between the model output and FYMA 

survey data (see overview Paragraph 2.1). The model was fitted to the relative abundances of the FYMA 

survey. Also, recruitment in the model is based on a relative measure, the glass eel abundance index. 

Subsequently, the estimated 𝐹 values and the registered landings were used to estimate the standing 

stock biomass in the lakes. The results were used as input to estimate the total Dutch eel stock biomass 

(Chapter 5).  

 

The demographic model tracks annual eel cohorts through time, for eel from 1989 until 2020. The 

demographic model has been improved compared to the model that was used in previous assessments 

(Bierman et al. 2012, van de Wolfshaar et al., 2015 &, 2018). The changes that were made compared to 

the last assessment (van de Wolfshaar et al., 2018) are described below. In the demographic model, 

each year individual eels grow, mature and die based on length and sex specific biological keys (Chapter 

2). Eels that reach the silver stage migrate away from the lakes and are excluded from the model. The 

cohorts are followed through time, resulting in an annual age-frequency distribution. Annual recruitment 

is independent from the local freshwater population and is based on the glass eel index. 

 

The estimates of 𝐹 depend heavily on the field data and on the biological parameters used in the model. 

For example, maturation is considered a loss of eel in the system, because silver eels are assumed to 

migrate to sea directly. Early maturation leads to a decrease of the fishing mortality of the stock. 

Likewise changes in sex-ratio and in growth rate affect the migration of silver eel from the modelled 

population, and hence the fishing mortality estimate. Uncertainty in the biological parameters increases 

the uncertainty in the estimates of 𝐹 (see also Bierman et al., 2012 and van de Wolfshaar et al., 2015 & 

2018).  

 

4.2 Model update 

Several improvements were made to the demographic model. All changes in the model are described in 

Appendix B1. The main changes to the demographic model compared to the model used in the previous 

eel assessment (van de Wolfshaar et al., 2018) are: 
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- The model was fitted to survey data of lakes IJsselmeer and Markermeer together, due to scarcity 

of data in lake Markermeer in some years. 
- Different periods for which a single F estimate was calculated were changed such that the periods 

better represented the changes in eel fisheries management (Paragraph 4.7) 
- The length-class based fit between model and data that was previously used, has been changed to 

an age-class based fit to allow for a better comparison between model and data. Since male and 
female eel display different growth patterns, it is not straightforward to choose sizes of length 
classes that result in an even distribution of the age classes over the size classes.   

- The moment of comparison of the model with the survey data was moved from April to October, to 
better fit the ages of the individuals in the survey data. Previously, the model output at the start 
of the year (April) was compared with survey data that was collected from September- November.  

- The derivation of some of the biological keys changed (Chapter 2). 
- Small changes were made in the selectivity of the commercial fisheries to better match the 

minimum landing size legislation for eel (Paragraph 4.5). 

 

4.3 Demographic model  

The demographic model assumes a closed system for the freshwater phase, similar to models previously 

described for eel (see Oeberst and Fladung, 2012; Ciccotti et al., 2012). The glass eels that enter the 

lakes are assumed to stay there until they mature to silver eel and begin their migration to the sea. For 

lakes IJsselmeer and Markermeer, this is a pragmatic simplification, because these are not entirely 

closed.  

 

The eel population in lakes IJsselmeer and Markermeer was modeled using a discrete time, Leslie matrix 

population model (Caswell, 2001). The model tracks the eels from when they enter the lakes until they 

become mature and start their migration to the ocean. We use a “reproductive subsidy” model (Hughes 

& Tanner, 2000) for a population that depends on external recruitment. Population projections with 

annual, externally driven recruitment follow: 

 

𝐱(𝑡 + 1) = 𝐀 ∙ 𝐱(𝑡) + 𝐫(𝑡). 

 

The vector with the number of individuals in each age class 𝐱, changes through time 𝑡, depending on the 

annual projection matrix 𝐀 and the time dependent recruitment vector 𝐫(𝑡). 

The model distinguishes between males and females, as eels display sexual disparity in growth and 

maturation. The different cohorts, or age classes in the model, are represented by 𝑖 and the sex classes 

by 𝑔. The transition probabilities between age classes are defined as 𝑃௚௜. We use two separate matrix 

models for the two sexes, for females 𝐀௙: 

 

𝐀௙ =  ൮

 0 0 0 …
 𝑃௙௜ 0 0 …

0 𝑃௙௜ 0 …

⋮ ⋮ ⋮ ⋱

൲ 

And for males 𝐀௠: 

𝐀௠ =  ൮

0 0 0 …
𝑃௠௜ 0 0 …

0 𝑃௠௜ 0 …
⋮ ⋮ ⋮ ⋱

൲ 

 

The transition probability 𝑃௚௜ depends on the survival probability 𝑒ିி(௧) ௭೒೔ିఓ and the probability of 

maturing 𝑀௚௜: 

𝑃௚௜ = 𝑒ିி(௧) ௭೒೔ିఓ ൫1 − 𝑀௚௜൯. 

The survival probability depends on the natural mortality 𝜇, fisheries mortality 𝐹(𝑡) and fisheries 

selectivity 𝑧௚௜. 
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The annual recruitment 𝐫௚(𝑡) is independent from the local yellow eel abundance. The recruitment per sex 

class depends on the sex ratio of the recruits 𝜌(𝑡) (female ratio in recruits). For female recruitment 𝐫௙(𝑡): 

 

𝐫௙(𝑡) =

⎝

⎜
⎛𝐾𝜌(𝑡) 𝐼(𝑡)

0
0
⋮ ⎠

⎟
⎞

, 

 

Recruitment further depends on the annual glass eel index 𝐼(𝑡) and the glass eel to recruits conversion 

factor 𝐾. Male recruitment 𝐫௠(𝑡) follows: 

 

𝐫௠(𝑡) =

⎝

⎜
⎛𝐾(1 − 𝜌(𝑡)) 𝐼(𝑡)

0
0
⋮ ⎠

⎟
⎞

. 

 

Numbers through time thus follow 𝐱𝒇(𝑡 + 1) = 𝐀𝒇 ∙ 𝐱𝒇(𝑡) + 𝐫𝒇(𝑡) for females and 𝐱𝒎(𝑡 + 1) = 𝐀𝒎 ∙ 𝐱𝒎(𝑡) + 𝐫𝒎(𝑡)   

for males. 

 

The model follows eel in the lakes from 0.5 to 21.5 years after arrival in the lakes (Table B1, Appendix 

B1). The reason for starting the model 0.5 years after arrival in the lakes is that the FYMA survey takes 

place in September-November while the glass eel arrive at the Dutch coast in spring and the glass eel 

survey takes place from March-May. The census moment of the model, or the time at which model and 

data are compared with each other, is therefore set to October to match the FYMA survey, half a year 

after the glass eels enter the Lakes. The age classes of the model thus run from 0.5-1.5 years in age. 

 

4.4 Annual recruitment parameters 

Recruitment in the model is based on the glass eel inflow, which is monitored at Den Oever (Figure 4-1). 

The glass eel index 𝐼(𝑡) is based on numbers per haul and needs to be converted to numbers of yellow 

eel/trawled surface as used by the FYMA, which is done by multiplying with the glass eel to yellow eel 

conversion factor (𝐾). In 2014, 2017 and 2019, stocking with glass eels (all three years) and elvers 

(2014) have taken place in lake Markermeer. Here, it is assumed that the amount of stocking is 

neglectable compared to the number of glass eels entering the lakes. 

 

The female ratio of the recruits (𝜌(𝑡)) is based on market sampling data between 1978 and 2019. Most 

eel gender is determined after being in fresh water for two years (Beullens et al., 1997) and sex 

differentiation has been related to factors such as eel density at the time of forming the sexual organs 

(e.g., Roncarati et al., 1997; Davey & Jellyman, 2005; Bark et al., 2007). The female ratio varies 

annually, based on the sex of individuals at 2 years after arrival (Appendix B2). For the missing years, 

the average value over the years with data was used. 
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Figure 4-1 Glass eel average numbers per haul presented as an annual index (black circles) from 1979-

2020, monitored at Den Oever, the Netherlands. 

 

 

4.5 Age specific model parameters 

All parameter values can be found in Table B1 in Appendix B1. Parameterization is based on the 

biological keys (Chapter 2). Per age and sex class, the length at the mid-age of the age class is used to 

derive all the length-dependent and age-specific parameters. This means, for example, that for the first 

age class in the model, that runs from 0.5 – 1.5 years after arrival, the mid-age used for 

parameterization was 1 year after arrival. The length at the mid-age of the age class was determined 

from the von Bertalanffy growth curves (Figure 2-4). Age- and sex-specific probabilities of maturing (𝑀௚௜) 

were derived from length-based estimates of the proportion of mature eel in the market samples (Figure 

2-2). Fishing selectivity (𝑧௚௜) is assumed zero for age classes with a length smaller than the minimum 

landing size, which is 28 cm. Rings in fyke-nets to allow escapement of undersized eel have been 

mandatory since the 1980s and few undersized eel are caught with this commercial gear. Moreover, eel 

is a robust species that can easily survive for some time out of the water or while captured in a net. 

Catch and release mortality of eels below the minimum landing size caught in fykes is assumed to be 

negligible. About one fifth of the eel catches in the lakes are caught by longlines (Dutch: ‘hoekwant’). 

Catch and survival of undersized eel from the longlines is unknown and are therefore not taken into 

account in this study. In the model, eels in age classes (see below) that include individuals of 28 cm or 

more, therefore suffer from fishing mortality (Appendix B, Table B1). Fishing selectivity for age classes 

that are partly fished is equal to the proportion of the time an individual is 28 cm or larger in that age 

class, according to the standard growth curve (Chapter 2, Figure 2-4). Natural mortality is assumed to 

be independent from age or length and constant through time, 𝜇 = 0.138 (Dekker, 2000: see Paragraph 

2.7). Parameter values for 𝐹(𝑡) and 𝐾 were estimated based on a log-likelihood estimation procedure by 

comparison between sampling data and model output.  

4.6 Model fitting 

To allow for a comparison of the (age-structured) model with the (length-based) FYMA survey data, the 

FYMA data were converted from length to age (Figure 4-2). The FYMA survey data were converted from 
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CPUE per length class (1-cm increments) to CPUE per age class based on the von Bertalanffy growth 

curves (Chapter 2). The von Bertalanffy growth curves were corrected for the time deviation between the 

glass eel survey (March - May) and the market sampling (May - September). The CPUE per age class was 

calculated based on the age classes defined for the demographic model (Table B1, Appendix B). Since 

the growth curves are sex-specific, the proportion of males to females per length class was set first 

(Chapter 2). For the length classes below 28 cm, the model assumes a sex-ratio that is equal to the sex 

ratio of the 28 cm length class because there was not a sufficient number of sexed individuals smaller 

than 28 cm to determine a length-dependent sex ratio. Parameter values were estimated for a model fit 

on a combination of lakes IJsselmeer and Markermeer data. The weighted mean between lake IJsselmeer 

and lake Markermeer was calculated based on the surface area between the lakes, which is 62:38. 

 

 

There is no information available on the selectivity of the survey gear and therefore the assumption was 

made that this selectivity is equal for all lengths. However, the model was fit to data starting from eel at 

the age of two years since arrival at the coast, because it seems as if the number of individuals per age 

class increases from year 0 to year 1 and in some years from year 1 to 2 after arrival (Figure 4-2). This 

Figure 4-2 Mean CPUE per year and per age (years since arrival) in the FYMA electric beam trawl survey 
for lakes IJsselmeer and Markermeer, together, between 1989-2020, after application of the length-age 
key. Note that the scale of the y-axis differs per graph. 
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is indicative of a lower catchability of the smallest individuals in the FYMA survey data. As long as an 

equal selectivity is assumed, the absolute selectivity of the FYMA survey is not expected to affect the 𝐹 

estimates since all estimates are based on relative changes in abundances.    

 

From year 7 after arrival, only a few individuals per age class are observed in the FYMA survey. This 

introduces large uncertainties in the estimated CPUE. Therefore, the age class 7+ was used as the last 

age class in the model.  

Parameter values for 𝐹(𝑡) and 𝐾 were estimated with a minimum log-likelihood Metropolis-Hastings 

algorithm following van de Wolfshaar et al. (2015 & 2018) and Bierman et al. (2012). The algorithm 

computes population projections for different values of 𝐹(𝑡) and 𝐾 and estimates which population age 

distribution to be the best match for the data. Through stochastic iterations (n = 50,000), the algorithm 

finds the combination of parameters for which the fit is best. The likelihood was calculated based on a 

Poisson distribution and the prior likelihood is based on an even distribution. Jump sizes of 1% of the 

first values were used for the estimated parameters 𝐾 and 𝐹(𝑡). The results below are based on initial 

values for 𝐾 of 0.1 and for 𝐹 of 1.0, but robustness of the results was tested through the use of different 

initial values. For every outcome, the acceptance rate of the stochastic iterations was checked and a 

visual check of the convergence and the correlation between the estimated parameter values was 

performed. An acceptance rate of maximally 30% was maintained. In case the acceptance rate, the 

convergence or correlations were not satisfactory, the number of iterations was increased. In addition, 

visual checks were performed on the residual plots of model and data. 

4.7 Periods in fishing effort 

𝐹 is estimated for five different periods (1968-1988, 1989-1999, 2000-2008, 2009-2014 and 2015-

2020). The selection of the time periods was based on various motivations. The value of 𝐹 may change 

for the consecutive periods because of possible changes in fishing effort through time. These are referred 

to as possible changes in fishing effort because the number of permits is known, but the realized effort is 

not known before 2010, when the registration of used effort became obligatory. Consequently, the 

‘potential’ fishing effort is known, but the used effort is unknown. Moreover, it is also unknown if a 

reduction in potential effort (number of permits) has led to a reduction in realized effort. The decision on 

the breaks in the periods was therefore somewhat arbitrarily determined, based on what we consider 

major changes in potential fishing effort due to changes in management. The first period, starting in 

2000, is based on a reduction in permits for eel boxes (Bierman et al., 2012). The second break, 

between 2008 and 2009, is because in 2009 the EMP came into place, causing fishing to be prohibited 

during the main silver eel migration period (September-November). The break between 2014 and 2015 

was chosen because, since 2015, the fishing (effort) that was allowed on some types of commercial fish 

was limited (Tien et al., 2015), which may have led to an increase in effort for eel fishing. Not all of the 

changes in potential fishing effort were included, however. For example, the break due to the 2006 buy-

out was excluded, because it would create a very short period (2006-2008) for the fishing effort. In 

addition, the buy-out did not seem to have a large impact on the trend in landings, which was steadily 

decreasing between 2000 and 2009. In the report the 𝐹 values from the period 2000-2008 onwards are 

reported, as the first period for the overall eel assessment (2006-2008) falls within this period. 

 

4.8 Model fit and estimated fishing mortality 

The model predictions and the actual data on the FYMA catches (number per trawled km2 per age class) 

are presented in Figure 4-3. As expected, the eel abundance decreases with age in the data as well as 

the model (in the model this is predefined). Quite an obvious decrease in abundance is visible through 

the years in the age classes of eel from 2-5 years after arrival. In the age class of year 7+ after arrival, 

no such decline is observed. While the model predictions follow the general downward trend in the true 

data for the eel age classes between 2-6 years after arrival, there is a large deviation between the model 

and the data for the 7+ years age class. The residual plot (Figure 4-4) shows again the strong 

underestimation of the model on the abundance in the age classes 7+ years after arrival. In addition, 

there seems to be a small overestimation on the abundance in the age classes of 2 and 3 years after 

arrival in the most recent years. In the earlier years of the time series, this was an underestimation.   
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The estimated fishing mortalities for lakes IJsselmeer and Markermeer are given in Table 4-1, for the 

four periods (see previous paragraph). The fishing mortality (𝐹) for lakes IJsselmeer and Markermeer 

decreases over the first two periods but increases again in the last period. The estimated 𝐾 value is 0.06, 

which is the conversion factor between the relative glass eel index at the Afsluitdijk in Den Oever to the 

CPUE for yellow eel 0.5 years after arrival in the lakes in the FYMA. It includes the success rate of 

entering the lakes and survival probability from 0.0 to 0.5 years after arrival in the lakes. 

 

 

  

 

 

 

 

 

Figure 4-3 CPUE per age class (grey dots) and model predictions (minimum, maximum and mean 
outcomes of the last 20% of the iterations of the parameters estimated by the model – blue solid 
lines), both in number per trawled surface, area (km2), for the model fit of the data, together for 
lakes IJsselmeer and Markermeer.  



43 van 97 Report CVO 21.023 

 

 

Table 4-1 Model-estimated mean fishing mortality values (F) for model fits on lakes IJsselmeer and 

Markermeer data together. F is estimated for different periods, and the 90% confidence interval of the 

estimated parameter values in brackets indicates the variance in the values estimated by the model 

(after 50,000 iterations). 

 Fishing mortality 

lakes IJsselmeer and Markermeer 

F (2000 - 2008)  1.10 (1.08 – 1.12) 

F (2009 - 2014)  0.76 (0.73 - 0.79) 
F (2015 - 2020) 1.04 (1.01 – 1.07)  

  

4.9 Discussion of the demographic model 

The increase in eel numbers 7+ years after arrival in lake IJsselmeer in recent years is not captured by 

the model. Generally, the model underestimates the numbers for this age class. Potentially, the 

underestimation for the older ages stems from the large individual-level variability in eel growth (Panfili 

et al., 1994). The assumed growth curves do not allow for variability in age with size or for changes in 

growth over time. Part of the individuals that are estimated at 7+ years after arrival may thus actually 

be relatively fast growing individuals and be younger than that. In addition, growth patterns of eel could 

have changed over the years due to the large decrease in the density of eels (Figure 4-3). Also the 

environmental conditions in lakes IJsselmeer and Markermeer have changed substantially over the years 

(Soudijn & van de Wolfshaar, 2021), which may cause variation in growth.  

The growth curves that we currently use in the model are constant through time. Perhaps the best 

solution would be to use an annual age-length key, but the numbers of eel that are aged each year are 

not sufficient to support such data analysis. It is unlikely that the increasing eel numbers 7+ years after 

arrival in lakes IJsselmeer and Markermeer are migrating silver eel, as silver eel are hardly ever caught 

in the FYMA survey. 

 

In the previous assessment, the demographic model was fitted to the data of lake IJsselmeer and 

Markermeer separately. However, in recent years the numbers of eel in the lake Markermeer survey 

Figure 4-4 Residuals plot of the difference between the observed and predicted eel abundance per age 
class for the model fit of the data, together for lakes IJsselmeer and Markermeer, given the mean F 
estimates presented in Table 3.1. Both negative (red) and positive (black) deviations are plotted. The size 
of the circles indicates the value of the residual (with larger being a higher value). 
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have decreased to such low numbers that the length frequency distribution was not good enough to fit 

the model. As a result, the fit of the demographic model to data of Lake Markermeer alone is very poor 

and the estimates cannot be used. Therefore, the choice was made to fit on the data of Lakes IJsselmeer 

and Markermeer combined.  

 

Compared to the previous stock assessment (van de Wolfshaar et al., 2018), the estimate of F has 

changed substantially from 2000 onwards. The main causes are: 1) a longer times series is used (until 

2020 instead of 2016), which also affects the fit in previous years of the time series, 2) different periods 

were chosen for the F values, 3) a different growth curve was used, and, 4) the model was improved 

from a length-based to an age-based fit. In addition to the changes mentioned above, the model was 

now fitted on the data of lakes IJsselmeer and Markermeer together.  

 

The demographic model has been strongly improved compared to the previous assessment. There are 

still several possible improvements possible for the model: 

- Add the retained catches data to the model fit to allow an estimate of absolute biomass in the 

lakes by the model. 

- Consider the possibility of the use of different length-sex ratio relationships for different time 

periods in the model. Currently the model is based on a constant length-sex ratio through time 

while it is likely to vary with changes of F and the sex ratio of the recruits. 

- Consider the possibility of the implementation of a varying selectivity of the FYMA survey with 

length. 

- Consider the possibility of using different age-length curves for different time periods in the 

model, or a variable age-length key. It is not totally clear so far whether there are sufficient 

otolith readings available for such an exercise and how much variability in growth occurs through 

time. 

- Consider the possibility of using different maturity-length curves for different time periods in the 

model. It is not totally clear how much variability in maturity occurs through time or to what 

extend this process is affected by environmental variables. 

- Consider the possibility of using 0- or 1-year old individuals in the FYMA as a measure for the 

number of ‘recruits’ in the model instead of the glass eel index. There have been considerable 

changes in water management regimes over the years that have likely affected the flow of glass 

eel from the coast to the lakes between years. It is however impossible to determine how these 

changes in water management may have affected the ability of glass eel to reach the lakes. 

 

4.10 Eel biomass estimation in large lakes 

In the major large lakes (IJsselmeer, Markermeer, Randmeren and Grevelingen, Figure 4-5) eel biomass 

was estimated in a different way compared to other (smaller) water bodies (see Chapter 3 and Bierman 

et al., 2012). The major reason for choosing a different method, is that the relationship between the 

density inshore compared to offshore is highly uncertain (Chapter 3) and results in large overestimations 

of the standing stock in water bodies with a large proportion of offshore water.  

The standing stock for the lakes IJsselmeer and Markermeer was estimated using fishing mortality in 

these lakes as estimated by the demographic model (Table 4-1) and the commercial landings. For the 

biomass in the Randmeren and Grevelingen, no parameterized demographic model is available and the 

estimated density in the lakes IJsselmeer and Markermeer (standing stock/ha) was used as basis and – 

where available – corrected by the difference in CPUE in the shore as estimated with a dipping net. In 

the Randmeren, there is electric dipping net survey data available from 2012 onwards. In the saline lake 

Grevelingen, survey data with an electric dipping net is lacking completely. For the Randmeren, we 

therefore assumed that the eel density is the same as in the lakes IJsselmeer and Markermeer, corrected 

for the difference in CPUE from the electric dipping net surveys in the lakes. For Grevelingen, we do not 

have any reliable CPUE estimate available for eel. Therefore we use the uncorrected density from the 

lakes IJsselmeer and Markermeer. This is a strong assumption, and unlikely to be entirely true, but 

because good quality data is lacking a strong assumption needed to be made. Note that the method used 

here is different from previous reports. In van de Wolfshaar et al. (2018), it was assumed that the 
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fishing mortality in lakes IJsselmeer and Markermeer also applied to the other lakes. The assumption of 

equal fishing mortality, is considered to be an even stronger assumption, because the fishing mortality is 

not just depending on the density in the lakes, but also largely depending on management rules such as 

the relative amount of fishery, which differs a lot between the Randmeren, Grevelingen and lakes 

IJsselmeer and Markermeer. 

 

The estimated biomasses from the lakes IJsselmeer and Markermeer, Randmeren and Grevelingen are 

integrated into an estimate of the total Dutch standing stock (Chapter 5).  

 

  

Figure 4-5 The four large Dutch lakes 

 

 
4.10.1 Standing stock lakes IJsselmeer and Markermeer 

Estimates of the standing stock were calculated by combining the landings in lakes IJsselmeer and 

Markermeer (Appendix A0 and Paragraph 2.8). The percentage yellow eel in the total landings was 

estimated using the (representative) length data in the market sampling (Paragraph 2.1), sampled in 

lakes IJsselmeer, Markermeer, Randmeren and Grevelingen. In total, 74% of the total retained catches 

in biomass was estimated to be yellow eel. This percentage was used to convert the reported total 

retained catches into yellow eel and silver eel retained catches. Estimates of the standing stock of yellow 

eel and silver eel were subsequently calculated by combining the landings and the estimated fishing 

mortality as following: biomass = landings/(1-exp(-F)), (Table 4-2). This resulted in an estimated 

standing stock of 477 tonnes (355 tonnes yellow eel and 122 tonnes silver eel, Table 4-2) in 2018-2020, 

an increase of 179 tonnes since the previous period (2015-2017). This method assumes that the fishing 

mortality of silver eel is the same as the mortality of yellow eel. As there are many differences in 

behavior when silver eel starts to migrate, this assumption is uncertain, because the increased mobility 

of silver eel might also increase the catchability, which would lead to a higher fishing mortality. However, 

the absence of fishing in the main migration period of silver eel (closed period in September-November) 

since 2009, may have caused a lower fishing mortality for silver eel compared to yellow eel. Therefore, it 

is uncertain whether fishing mortality on silver eel is similar to yellow eel, or if it is an over- or 

underestimation. 
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Table 4-2 Estimated mean landings (tonnes), fishing mortality, and yearly standing stock (tonnes) in 
the lakes IJsselmeer and Markermeer per 3-year period.   

IJsselmeer and Markermeer  

 Period Landings Fishing mortality Standing stock (tonnes) 

Yellow eel (≥30cm) 2006-2008 202 1.10 305 

 2009-2011 113 0.76 215 
 2012-2014 117 0.76 222 
 2015-2017 143 1.04 222 

 2018-2020 228 1.04 355 
     
Silver eel 2006-2008 71 1.10 104 

 2009-2011 40 0.76 74 
 2012-2014 41 0.76 76 
 2015-2017 50 1.04 76 

 2018-2020 80 1.04 122 

 

 

 
4.10.2 Standing stock Lakes Randmeren and Grevelingen 

For the Randmeren, it is assumed that the eel density as estimated in the lakes IJsselmeer and 

Markermeer can be used as basis for the density in the Randmeren, corrected for the difference in CPUE 

in the electric dipping nets surveys at the different locations (Table 4-3). Because the electric dipping net 

surveys in the Randmeren took place from 2012 onwards, for the first two periods (2006-2008 and 

2009-2011) the CPUE from the period 2012-2014 is used to estimate the standing stock. This 

methodology results in an estimate of 6.3 tonnes of silver eel in the Randmeren for the latest period 

(Table 4-4).  

 

For Grevelingen, the assumption is made that the eel density is the same as in the lakes IJsselmeer and 

Markermeer. This results in a value of 9.2 tonnes of silver eel in the latest period (Table 4-4). 

 

 
Table 4-3 Mean CPUE per reporting period (tonnes/sampled ha) of the electric dipping net in the 
inshore surveys of the lakes IJsselmeer and Markermeer and the Randmeren per period.  

CPUE 

Lake 2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

IJsselmeer/ 
Markermeer 5.17 4.26 4.98 6.21 6.55 

Ketel & Vossemeer 8.85* 8.85* 8.85 6.88 7.47 
Randmeren-Oost 0.59* 0.59* 0.59 2.54 3.12 

Randmeren-Zuid 0.47* 0.47* 0.47 3.11 2.19 
Zwarte Meer 0.27* 0.27* 0.27 0.11 1.52 

* as no data was available for the Randmeren from before 2012-2014, for the first two periods (2006-2008 and 2009-2011, the 

CPUE from 2012-2014 was assumed) 
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Table 4-4 Density (tonnes/ha), surface area (ha), CPUE correction and yellow eel and silver eel 
standing stock (tonnes) per lake. 

  
2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

IJsselmeer/Marke
rmeer 

Density yellow eel  0.0017 0.0012 0.0012 0.0012 0.0019 

IJsselmeer/Marke
rmeer 

Density silver eel  0.00057 0.00040 0.00041 0.00041 0.00066 

Ketel & 

Vossemeer 

Surface area 4,067 4,067 4,067 4,067 4,067 

CPUE correction 1.71 2.08 1.78 1.11 1.14 
Yellow eel biomass 11.5 9.9 8.7 5.4 8.9 
Silver eel biomass 4.0 3.4 3.0 1.9 3.1 

Randmeren-Oost Surface area 6,318 6,318 6,318 6,318 6,318 
CPUE correction 0.11 0.14 0.12 0.41 0.48 

Yellow eel biomass 1.2 1.0 0.9 3.1 5.8 
Silver eel biomass 0.4 0.4 0.3 1.1 2.0 

Randmeren-Zuid Surface area 4142 4142 4142 4142 4142 

CPUE correction 0.09 0.11 0.09 0.50 0.33 
Yellow eel biomass 0.6 0.5 0.5 2.5 2.7 
Silver eel biomass 0.2 0.2 0.2 0.9 0.9 

Zwarte Meer Surface area 1,811 1,811 1,811 1,811 1,811 
CPUE correction 0.05 0.06 0.05 0.02 0.23 

Yellow eel biomass 0.2 0.1 0.1 0.0 0.8 
Silver eel biomass 0.1 0.0 0.0 0.0 0.3 

Total Randmeren Yellow eel biomass 27.1 19.1 10.2 11.1 18.2 

Silver eel biomass 9.3 6.5 3.5 3.8 6.3 

       
Grevelingen Surface area 13,902 13,902 13,902 13,902 13,902 

Yellow eel biomass 23 16.3 16.8 16.8 26.8 
Silver eel biomass 7.9 5.6 5.8 5.8 9.2 
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5 Overview national stock biomass 
 

5.1 Overview 

In this chapter the total eel stock biomass in the Netherlands is estimated for each period, based upon 

the biomass estimates of the different water bodies as described in Chapter 3 and Chapter 4. In Chapter 

7, these biomasses are used to calculate the key stock indicators as requested by the EC.  
 
Stock estimates are provided for the periods 2006-2008, 2009-2011, 2012-2014, 2015-2017 and 2018-

2020. In some cases, extrapolation between periods is necessary because insufficient data was available 

for every region in all periods (Table 5-1). Extrapolation is needed for the Volkerak-Zoommeer, 

Zandmaas, the Randmeren, ditches and the other regionally managed waters (Table 5-2). How 

extrapolation was done for the specific water body with missing data, is explained in Chapter 3 and 

Chapter 4. 

 

 
Table 5-1 Eel biomass estimate availability (‘data’) per period and per water body.’-’ indicates that there 
was not sufficient data available. * The non-WFD waters (ditches) data are not used per time interval but 
are grouped in the analysis. 

 
 

2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Large lakes 

IJsselmeer/ Markermeer data data data data data 

Grevelingen - - - - - 

Randmeren - - data data data 

Regionally managed 
waters 

Ditches* - - data data data 

WFD data data data data data 

Nationally managed 
waters 

Volkerak-Zoommeer - data - data data 

Zandmaas - data data data data 

Others data data data data data 

 

 

5.2 National stock biomass 

In Chapter 3 and Chapter 4, the biomass estimates for all eel (≥30 cm), yellow eel and silver eel, are 

estimated for all water bodies in the Netherlands. An overview of these estimates per period is given in 

Table 5-2. Subsequently, the total biomass is given by summing up the estimates of all water bodies per 

period to get a total estimate of the eel standing stock in the Netherlands (Table 5-2). This total biomass 

estimate shows that from the first period (2006-2008) to the second period (2009-2011) there was an 

initial large increase in biomass with around 2,000 tonnes and from the second to the third period (2012-

2014) there was a small increase (~ 500 tonnes). After the third period there was a very small decrease 

of ~ 100 tonnes to the fourth period (2015-2017) and again a decrease of ~450 tonnes to for the most 

recent period (2018-2020, Table 5-2). The current estimate is a standing stock of almost 5,000 (4,961) 

tonnes of eel (≥30 cm) in the Netherlands. The yellow and silver eel biomass estimates for each scenario 

(see Paragraph 3.2) and three-year period show the same trend as the total biomass, with initial 

increasing biomasses, but a decline in the latest two periods for yellow eel. Silver eel biomass increased 

until 2015-2017 but declined in the most recent period (Table 5-3). 
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Table 5-2 Biomass estimates (all eel ≥ 30 cm, in tonnes) in scenario 2 (see Paragraph 3.2) for each period.  

  
2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Regionally 
managed waters 

Ditches  981 981 981 981 981 

WFD Waters 1,947 3,236 3,793 2,265 1,791 

Nationally 
managed waters 

IJsselmeer/Markermeer 409 289 298 299 476 

Grevelingen 31 22 23 23 36 

Randmeren 36 26 14 15 24 

Others (main rivers) 645 1,539 1,446 2,842 1,673 

 Total 4,049 6,093 6,555 6,425 4,981 

 
 
Table 5-3 Total standing stock biomass (tonnes) estimates for yellow eel and silver eel (≥ 30 cm) for each 
period and each scenario. Scenarios 1-3 differ in catch efficiency and habitat preference for all water bodies 
except the large lakes (Chapter 3). The silver eel biomass estimates are used in Chapter 7  

 
2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Yellow eel       
Scenario 1 1,032 1,312 1,293 1,240 1,174 

Scenario 2 3,280 5,093 5,034 4,773 3,869 
Scenario 3 3,926 6,350 6,292 5,953 4,728 
      
Silver eel       

Scenario 1 274 291 394 421 352 
Scenario 2 769 999 1,521 1,652 1,113 
Scenario 3 907 1,222 1,915 2,088 1,365 

 
 

5.3 Discussion 

The values presented here show an initial increase in eel biomass, but a decrease in recent years (Table 

5-3). This pattern is, however, not equal for the different water bodies. The biomass estimates in the 

WFD-waters had a large influence on the trend in the total biomass. The estimate of the WFD-waters 

shows very high biomass estimates in the second and third period, and lower values in the last two 

periods (Table 5-2). Other waters do not follow the same trend. For example, the large lakes follow a 

opposite trend compared to the WFD-waters, with high biomass in the first and last period. However, 

with a lower biomass estimate, the large lakes are less influential on the total biomass estimate of the 

stock. Also the other nationally managed waters (excluding the large lakes), follow a different trend. 

They have a low biomass estimate in the first period and much higher values in the later periods. 

Especially in the period 2015-2017 the value of the national waters is highly influential on the total 

biomass estimate, with a much higher value (mainly due to the ‘Benedenrivieren’, see Table 3-9) 

compared to all other periods (Table 5-2).  
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6 Mortality during silver eel migration due to barriers 
 

6.1 Silver eel barrier mortality 

Silver eel suffer barrier mortality during downstream migration when passing through barriers. This 

barrier mortality is one of the sources of mortalities which are used in the overall assessment as 

presented in Chapter 7 (see the flow diagram of the stock assessment, Figure 1-1). This chapter 

describes the methodology and data on which estimates of barrier mortality during silver eel migration 

are based. 

 

To update the data since the last assessment (Van de Wolfshaar et al., 2018) an inventory was held 

among water boards to renew the information on barrier specifics concerning migration. In addition, an 

update of the list of barriers that were replaced by a different type was made for barriers in the WFD 

waters.  

 

This chapter also deals with assisted migration in which silver eel is caught upstream from a barrier and 

‘lifted’ across it, so called ‘trap and transfer’ mitigation (Paragraph 6.3). 

 

6.2 Barrier types 

There are different types of barriers (Figure 6-1):  

 

1. Pumping stations: pumping stations (Dutch: ‘gemaal’) are mainly used for the drainage of 

low-lying land and pump water from a polder into another water. Most pumping stations are 

situated in the areas in the Netherlands that lay below sea level and refrain the land from 

flooding. In the Netherlands there are thousands of pumping stations (Figure 6-1b). 
 

2. Ship locks. Locks are built in places where the level of the water within a waterbody changes. A 

ship lock allows ships and vessels to travel up or down a water body to a higher or lower water 

level. The lock controls the depth in the lock, allowing for different levels at each side of the lock 

(Figure 6-1a). 

 

3. Discharge sluices. Discharge sluices (Dutch: ‘spuisluis’) are built to control water levels, and 

discharge excess water by periodically opening them when the water levels of the receiving 

water body are lower than the ‘upstream’ water body (Figure 6-1c). 

 

4. Weirs. Weirs are built to control water levels in both running waters, i.e. streams and rivers, 

and smaller polders. They can be lowered or lifted when the upstream water levels are too high 

(Figure 6-1d).  

 

5. Hydroelectric power station (HPS). A hydroelectric power station uses flowing water to set a 

turbine in motion. These stations are located on rivers and usually are large barriers. In the 

Netherlands there are three HPS’s on two main national rivers. Two in the river Meuse and one 

in the river Rhine (Figure 6-1d) 
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Figure 6-1 An illustration of different types of barriers. Barriers range from simple, e.g. single ship lock 
(a), to combinations, e.g. pump station and ship lock (b), to very complex sites consisting of a combination 
of pumping stations, ship locks, sluices or other alternative routes for migration, for example this site at 
IJmuiden in the North Sea Canal to sea (c). the more complex a site is, the more routes silver eel can 
follow to pass the obstruction. Mortality rates per route can be different, e.g. through a HPS, and therefore 
the distribution of eel passing via the different routes per site determines the overall mortality rate for the 
entire site, for example this site at Linne in the Meuse (d). 
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6.3 Assisted migration 

Recent assisted migration (also called trap and transfer) initiatives, in which silver eel is caught above a 

barrier and ‘lifted’ across it, are taken into account when calculating the overall migration mortality for 

silver eel. Since 2011, several projects have started at migration barriers (mainly pumping stations) to 

assist the migration of silver eel. Because not all silver eel passing the selected barriers for assisted 

migration suffer from mortality or injuries, an assessment was done to estimate the absolute amount of 

saved eel. In 2013, a selection of the main barriers was made (Winter et al., 2013a) to improve the 

selection and efficiency of assisted migration initiatives. Applying location-specific mortality rates, the 

overall amount of ‘saved’ eels was based on the mortality rate of the given site. This value is subtracted 

from the migration mortality biomass estimate. 

 

6.4 Model for estimating barrier mortality 

Assessing the mortality of silver eels during their migration from inland water bodies to the sea is difficult 

due to the large numbers of barriers. There is a huge amount of pumping stations, many ship locks and 

three larger HPS’s in the Netherlands (Kroes et al., 2018; Belletti et al., 2020). To construct a model on 

silver eel mortality caused by these barriers, knowledge on the following processes is necessary: 

 
1) Silver eel migration routes, when migrating from inland water bodies to the sea 
2) The barriers that the silver eels encounter along these routes 
3) Mortality rates during passage of barriers 
 

For this assessment, a silver eel migration model was built, based on a hierarchy of water bodies, 

providing a reasonable description of silver eel migration in the Netherlands (Figure 6-2). In this model, 

silver eels are split into three ‘hierarchy levels’; each hierarchy level representing a water body type 

where they start the migration route to the sea. The three hierarchy levels are: 

 

1) 1st hierarchy (‘polder’ water bodies): water bodies which are below sea level and serviced by a 

large number of small pumping stations. In the model, it is assumed that silver eel migrate 

through a single pumping station in order to leave a polder (i.e. no multiple pumping stations in 

sequence). For most polders, pumping stations discharge water into a ‘boezem’ water body (2nd 

hierarchy, see below), which will face additional barriers. Pumping stations of polders close to 

the coast can pump water directly into the sea, in which case the silver eels that survive the 

passage of these sites do not face another barrier and are able to escape to the sea directly. In 

the model, polder waters are represented by the wetted area of non-WFD waters (ditches, see 

Paragraph 3.2); 

 

2) 2nd hierarchy (‘boezem’ water bodies): water bodies such as canals, small inland lakes and 

smaller streams and rivers. In the model, boezem waters are represented by all regionally 

managed WFD water bodies (Paragraph 3.2). Boezem waters are either connected directly to the 

sea or to large nationally managed water bodies (3rd hierarchy, see below) via larger pumping 

stations, ship locks, weirs and/or discharge sluices. In case they are connected to national water 

bodies, they face additional barriers. 

 

3) 3rd hierarchy (‘national’ water bodies): large nationally managed water bodies such as sections of 

the main rivers Rhine and Meuse (including downstream parts, Chapter 3), the freshwater lakes 

IJsselmeer and Markermeer, Randmeren and Grevelingen (Paragraph 4.9). In the River Meuse 

and the Rhine river branch Nederrijn/Lek, there are large HPS’s. National water bodies are 

connected to sea mainly by discharge sluices (e.g. IJsselmeer, Lauwersmeer, Haringvliet), 

and/or by large pumping stations (e.g. IJmuiden), always in combination with ship locks at each 

of these locations or have an open connection (e.g. Nieuwe Waterweg).  
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The framework of the model for migration routes is illustrated in Figure 6-2. The hierarchies as described 

above are connected with each other and with the sea as presented by the arrows. For each arrow the 

proportion of eel choosing that route and the proportion that will not survive a passage is estimated. 

Barrier mortality occurs when silver eels pass from one hierarchy to another, or from one hierarchy to 

the sea. The model thus assumes that barriers within the 1rst and 2nd hierarchy are never in sequence: 

eel cannot experience the barriers that belong to the same hierarchy more than once. There are only a 

few polder waters with two or even more boezem layers, in which polder waters are pumped into an 

‘inner boezem’ and subsequently pumped into an ‘outer boezem’. Because the area of polder water that 

has multiple pumping stations before reaching a boezem water is small, it is therefore of little influence 

on the outcome of the model. For the 3rd hierarchy, on the different routes from the 2nd hierarchy to sea 

via the national water bodies, different subsequent barriers can be passed along each of the potential 

routes.  

 

For the parameterization of the model, the migration routes as described in Winter et al. (2013a & 

2013b) are used. For each possible route and three-year period, an average proportion of silver eel going 

that route is calculated. Second, the proportion of eel that does not survive passing a barrier is 

calculated for each three-year period (Paragraph 1.4). The proportion of eel that has not arrived at the 

sea, but has migrated to the next hierarchy will subsequently encounter another barrier, where again a 

proportion of eel will survive etc. In the next paragraph the estimated migration routes and mortality 

estimates per hierarchy are described. 

 

 

 

Figure 6-2 A conceptual model for estimating mortality during silver eel migration due to barriers; for 
‘polder’ (1st hierarchy), ‘boezem’ (2nd hierarchy) and national waters (3rd hierarchy , see text). WKCs are 
HPS’s in river sections of the national waters.  

 
6.4.1 1st hierarchy: from polder to boezem or to the sea.  

 

Migration routes 

Most polders (1st hierarchy) have pumping stations that discharge water into the boezem (2nd hierarchy) 

rather than to the sea. Only some coastal polders have pumping stations that discharge water directly to 

the sea. In the model it is assumed that 80% of the eel in polder waters migrate to boezem waters 

where additional mortality due to sequential barrier passage might occur. The remainder (20%) is 

migrating directly from the polder to the sea, such as all polders in Zeeland and part of the polders in 

Zuid-Holland, Friesland and Groningen.  

 

Mortality 

Silver eel migrating from the polder (1st hierarchy) to the boezem (2nd hierarchy) or directly to the sea 

will encounter at least one pumping station. A fraction of these migrating silver eel suffer direct and 

indirect mortality when passing this pumping station. The direct mortality is caused by the pumping 

station damaging the eel. Indirect mortality can occur at pumping stations because eel that aggregate in 

front of a barrier have a higher chance of being predated by piscivorous fish or birds. Also the risk of 
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being captured by fishermen is higher around pumping stations when migrating silver eel aggregate 

while searching for an opportunity to pass (e.g. Winter et al., 2020). A recent study demonstrated that 

for migrating silver eel, pumping stations delayed migration but did not function as a permanent barrier 

for most eel (van Keeken et al., 2020b). Here, only the mortality (including additional mortality of 

injuries) when the eel pass through a pumping station is taken into account, because the indirect 

mortalities have not been quantified and are expected to be small compared to the direct mortality. 

 

Pumping stations can roughly be divided into three groups (Kunst et al., 2008): 

 
1) Pumps (72%):  

a. 54% Propeller pumps, 
b. 14% Centrifugal pumps and 
c. ~5% Propeller-centrifugal pumps 

2) Archimedes’ screws (27%): A pump type that pumps water by turning a screw-shaped 
surface inside a pipe.  

3) Water wheels (0.2%). 
 

 

An overview of studies on the impact of different pumping station was made and is listed in Appendix C1. 

This resulted in that especially the most common Propeller pump (Table 6-1) cause the highest mortality 

when silver eel pass through. Other pumps, water wheels and Archimedes’ screws show lower mortality 

rates compared to propeller pumps (Table 6-1, Appendix C1).  

 

After passage of a pumping station, eel also suffer from internal injuries which results in delayed 

mortality, where a fraction of 0.5 of the damaged eels were assessed to suffer delayed mortality 

(Kruitwagen & Klinge, 2008). Therefore, mortality was calculated as direct mortality (%) plus a fraction 

of 0.5 of the % damaged eels for each of the pump types. The average silver eel mortality during 

passage of pumping stations was estimated as the weighted average of the mortalities for each type of 

pumping station and estimated to be 34.7% (Table 6-1). The estimate of mortality at pumping stations is 

the same for every three-year period. 

 

Table 6-1 Calculation of the average pumping station mortality used to estimate silver eel mortality 
during migration (see also Appendix C1). 

Pump type Proportion  
 

Average mortality* (%) 
(Appendix C1) 

Weighted Mortality 
(%) 

Water wheel 0.002 0.0 0.0 

Archimedes’ screw 0.27 12.0 3.2 

Centrifugal pump 0.14 12.0 1.8 

Propeller-centrifugal pump 0.05 9.0 0.4 

Propeller pump 0.54 56.0 29.3 

Pump Mortality**   34.7 

* Mortality is % dead + half of the % damaged.  

 
6.4.2 2nd hierarchy: from boezem to national waters or the sea  

 

Migration routes 

At larger boezem waters a combination of different man-made structures is usually present (see Figure 

6-1 for examples). An up to date overview was made of the most important barriers for silver eel 

migration from boezem to the national waters in the larger waters of the Netherlands (Appendix C2). The 

most important barriers for silver eel migration are selected: 1) based on the size of the area that 

discharges via the potential barrier and 2) based on the biomass distribution of silver eel as estimated in 

Chapter 3 and Chapter 4 (Winter et al., 2013a & 2013b, and updates; Appendix C2). For each of these 
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most important barriers, it is known whether a passage leads directly to the sea or to a national water. 

Combining this information with information on the amount of silver eel per starting location/water body 

(Chapter 3 and Chapter 4), allows for distribution estimates based on a so called ‘bottom up’ approach. 

In this approach the estimates are not based on a pooled average (as used in the 1st hierarchy) but on 

the real migration routes (see Appendix C2 for the results of this assessment). For each water board, the 

biomass of starting eel in the boezem waters (2nd hierarchy) is divided over the different outlets with 

potential barriers (fluxes along the routes to sea or national waters) according to Winter et al. (2013a, 

2013b). Then for each of these fluxes of silver eel biomass per outlets with potential barriers the biomass 

flux was corrected for barrier mortality for each specific site. In case the flux went into a national water 

body, then the biomass flux corrected for mortality was added to the starting biomass of silver eel in the 

receiving national water body. The total amount of silver eel biomass for a national water body was then 

corrected for the mortality that these eels were expected to suffer on their route to the sea. This 

approach results in estimates of biomass losses relative to the starting silver eel biomass for each of the 

main barriers in the 2nd and 3rd hierarchy (Appendix C2). 

 

Mortality 

Similar to the migration routes, the mortality estimates for silver eel migrating from boezem to national 

waters are based on an inventory of the most important migration barriers for silver eel (Winter et al., 

2013a & 2013b, and updates; Appendix C2). Given the mortalities of barriers weighted by the amount of 

silver eel per barrier relative to the total amount of silver eel, the overall estimated mortality for a 

passage from a boezem to national waters is 15.2% and for passage to the sea the estimated mortality 

is 5.0%. These estimates are assumed to be the same for every three-year period. 

 
6.4.3 3rd hierarchy: from national waters to sea, including HPS’s  

 

The 3rd hierarchy consist of national waters. Within the national waters there are three hydroelectric 

power stations (HPS), and apart from those there are mainly discharge sluices. 

 

Hydroelectric Power Stations (HPS) 

The overall mortality of silver eel migrating through a river site with a HPS depends on the proportion of 

the silver eel that go through the HPS station and the mortality they suffer when passing this, relative to 

the proportion of silver eel that pass through safer routes (weir, ship lock, fishway, see figure 6-1d). For 

the HPS station Linne and Alphen mortality rate was initially 24% for the eels that passed through the 

HPS station, and when corrected for the proportion that actually migrates through the station, resulting 

in 15% at HPS Alphen and 17% at HPS Linne for the total flux of silver eel at these sites for the periods 

2006-2008 and 2009-2011. Data on proportion of eels divided over the different routes at a site was 

derived from telemetry studies (Winter et al. 2006, Jansen et al. 2007). In mid-November 2011, an 

altered turbine management (Buijse 2009) was implemented that resulted is a reduction of mortality rate 

for the hydropower stations from 24% to 19%. When corrected for the proportion that migrated through 

the hydropower stations from more recent telemetry studies (Griffioen et al. 2020) this resulted in 13% 

for HPS Alphen and 14% for HPS Linne for the periods 2012-2014, 2015-2017, 2018-2020. For HPS 

Amerongen a hydropower mortality of 9.5% was determined (Kemper 2014). This value was taken as a 

best guestimate for all periods. 

 

Migration routes and mortality 3rd hierarchy other than HPS’s 

Similar to the boezem waters (2nd hierarchy), the mortality estimates for silver eel migrating from 

boezem to national waters are based on an inventory of the most important migration barriers for silver 

eel (Winter et al., 2013a & 2013b, and updates; Appendix C2). Apart from the HPS’s, most of the 

national waters are connected to the sea by discharge sluice systems which cause no mortality. This 

leads to an estimate of the overall mortality rate from national water bodies (apart from mortality at 

HPS’s) to sea of 2.0%. This estimate is higher than in previous assessments (0.5% van de Wolfshaar et 

al., 2018), mainly because of two new insights. First, recent intensive telemetry studies (Winter et al., 

2019; Winter et al., 2020) on silver eel in the North Sea Canal area, including in lake Markermeer, 

showed that a substantial part (~ 40%) of the silver eel migrate from this lake via the sluice-complex 

Oranjesluizen to the North Sea Canal and via the pumping station sluice complex at IJmuiden to sea. 
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Second, the overall mortality rate at the pumping station sluice complex at IJmuiden with recent 

extensive telemetry studies (2017-2018) was demonstrated to be higher (15-28% per year, Winter et 

al., 2019; Winter et al., 2020) compared to earlier estimates (2-3%, Winter, 2011). The main reason 

causing this increased mortality was that a larger proportion of silver eel select a more hazardous route 

via the pumping area than previously estimated. The two new insights combined, i.e. 40% of 

Markermeer silver eels go to IJmuiden and the mortality rate at IJmuiden is much higher than earlier 

assessed, causes that the overall mortality rate from all national water bodies to sea (of which only a 

small proportion migrates to sea via IJmuiden, and the majority via other routes, e.g. via lake IJsselmeer 

to the Wadden Sea, via Nieuwe Waterweg and Haringvliet to the North Sea) to be 2.0%, whereas in the 

previous evaluation in 2018 this was underestimated at 0.5%. In this report these new insights are 

applied to the calculations of migration mortality of all three-year periods.  

 

6.5 Summary 

6.5.1 Model scheme 2018-2020 

Based on the migration routes and mortality estimates reported above, the model scheme was filled with 

the estimated mortalities (Figure 6-3). 

 

Figure 6-3 Migration scheme, listing the used to estimate overall migration mortality of silver eel. ‘WKC’ = 
HPS. P: the percentage within each hierarchy (polder, boezem or national) of silver eel migrating to sea or 
to the next level. Mortality estimates for the most recent period (2018-2020). 

 
6.5.2 Mortality estimates per period and hierarchy 

The final mortality percentages are listed in Table 6-2. For the 1st (polder waters) and the 2nd (boezem 

waters) only one estimate is used for all periods. Changes in barrier mortality over time thus only occur 

in the HPS’s (Linne and Alphen) and in the national waters (Table 6-2) 

 

Table 6-2 Silver eel migration barrier mortality rates per period. 

  2006 –  2008 2009 – 2011 2012 – 2014 2015 – 2017 2018 – 2020 

From polder to boezem 34.7% 34.7% 34.7% 34.7% 34.7% 

From polder to sea 34.7% 34.7% 34.7% 34.7% 34.7% 

Boezem to national waters 15.2% 15.2% 15.2% 15.2% 15.2% 

Boezem to passage to the sea 5.0% 5.0% 5.0% 5.0% 5.0% 

HPS Linne  17% 17%  13% 13%  13%  

HPS Alphen 15% 15% 14% 14% 14% 

HPS Amerongen 9.5% 9.5% 9.5% 9.5% 9.5% 

Mortality national waters to sea 2.3% 2.3% 2.1% 1.5% 2.0% 
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6.5.3 Total mortality rates 

For the estimation of the key stock indicators in Chapter 7, a single estimate of barrier mortality for 

migrating silver eel is needed. The migration routes and mortality rates as described above (Table 6-2) 

are combined with the starting biomass estimates per three-year period and location (Chapter 3 and 

Chapter 4) for each three-year period. This results in an estimate of the total proportion of barrier 

mortality of migrating silver eel (Mbarrier). The proportion of barrier mortality showed a decrease from the 

first period (0.17, 2006-2008, Table 6-3) to 0.13 in the latest period (2018-2020, Table 6-3). These 

estimates are used in Chapter 7 for the estimation of the key stock indicators. 

 
Table 6-3 Total silver eel barrier mortality for all hierarchies combined. 

Period Barrier mortality (Mbarrier) 

2006-2008 0.17 

2009-2011 0.16 
2012-2014 0.14 
2015-2017 0.11 

2018-2020 0.13 

 

6.6 Discussion 

Given the large number of small polders (1st hierarchy) and the lack of site-specific data for most of 

these sites, mortality rates for those waters are based on overall silver eel production estimates 

combined with an overall calculated average mortality rate. For the boezem (2nd hierarchy) and national 

waters (3rd hierarchy), a so called ‘bottom up’ approach was followed, using site specific mortality 

estimates (Winter et al., 2013a &, 2013b, and updates). This approach yielded more accurate estimates 

than the more general approach based on averages as used for the 1st hierarchy. However, the quality of 

the underlying data that was used in the updated silver eel barrier assessments is highly variable and 

often still incomplete. Some sites are very well studied, e.g. the sites with HPS’s in the River Meuse 

(Winter et al., 2006 & 2007; Jansen et al., 2007; Griffioen et al., 2020), the discharge sluices complexes 

in Haringvliet (Winter & Bierman, 2010) and at the sluices-pumping station complex at IJmuiden (Winter 

2011; Winter et al., 2019 & Winter et al., 2020), but for other sites, e.g. ship locks and most of the 

pumping stations, data on silver eel mortality at a specific site are usually lacking. However, for some of 

these sites conditions have changed since these studies were carried out and updated estimations are 

needed to determine current mortality losses due to pumps or HPS’s. Research that determined mortality 

for eels that passed through HPS’s in the River Meuse was carried out in 2002 when average silver eel 

length in the river Meuse was 65cm (Bruijs et al. 2003). However, the average length of silver eel in the 

upper parts of the river Meuse increased over the years and now averages 83cm (period 2012-2020, 

WMR data), which will result in higher mortality when passing the HPS’s. In future evaluations the effect 

of increased average length on mortality should be determined. In addition, the relative proportion of 

silver eels that pass through the turbines over other safer pathways (weir, sluices, lateral canals), will be 

affected by changes in discharge patterns (e.g. increasing incidence of dry periods in summer and 

autumn) and recent management measures (e.g. periodically closing turbines during nights in autumn 

and additional fish friendly turbine operation adaptations). In future evaluations, additional studies and 

data need to be incorporated to determine overall HPS’s mortality under the recently changed conditions. 

Last, the barrier-mortality approach as used here for the 2nd and 3rd hierarchy waters can be further 

developed to enable a full site-specific and data driven approach including the 1rst hierarchy. Several 

maps and lists of barriers are available (e.g. Kroes et al., 2018; Buijse et al., 2009 and in the Amber 

barrier atlas4, the National Fish Migration Route Map RWS/Nationale Visroutekaart RWS).  

 

  
  
  

 
4 https://amber.international/barrier-atlas/ 



58 van 97 Report CVO 21.023 

 

7 Stock indicators 
 

7.1 Stock indicators 

Under the eel regulation (EC 1100/2007) MS’s are obliged to report on a list of stock indicators (Table 

7-1, this is a similar table as Table 1-2, but listed here again for readability purposes). The stock 

indicators are based on the biomasses and silver eel barrier mortalities as estimated in previous chapters 

(Chapter 3,4,5 & 6) and additional information on retained catches. In this chapter, these key stock 

indicators are estimated. Only B0 (pristine silver eel biomass, Table 7-1) is a constant value that was 

calculated in 2010 (ICES 2010b). The B0 value for inland waters in the Netherlands is set at 10,400 

tonnes (ICES 2010b). The other stock indicators vary per period. 

 

In this assessment, mortalities during the yellow eel and silver eel stages are split into two groups. The 

reason is that yellow eel mortalities apply over a sequence of years as the yellow eel stage usually takes 

between 3-20 years. Silver eel mortality is assumed to apply during a single year in the life cycle of an 

eel. The yellow and silver eel mortalities are combined in a single mortality rate, the ‘Lifetime 

Anthropogenic Mortality’ (ΣA, Table 7-1). ΣA is the mortality that eel experience throughout their lifetime 

and it is based on the ratio between the current silver eel biomass escapement (Bcurrent, Table 7-1) and 

the best possible escapement under current recruitment levels (Bbest, Table 7-1). 

 

 
Table 7-1 Overview of the main stock indicators to be reported to the EC. The MS’s are also obliged to 
report on the amount of glass eel (eel <12 cm) that are harvested for restocking. These are not reported 
here because this is not relevant for the Netherlands; no glass eel are harvested. 
Indicator Description 

B0 Pristine silver eel biomass. An estimate of escapement in the absence of any anthropogenic impact and 
at historic recruitment levels. 

Bcurrent  Silver eel biomass estimate of the current silver eel escapement to the sea. 

Bbest The best silver eel biomass possible under current recruitment levels, i.e. silver eel biomass estimate 
without anthropogenic influences on yellow eel and silver eel stock, i.e.  

ΣF Fishing mortality rate (yellow and silver eel, commercial and recreational). 

ΣH Anthropogenic mortality rate from other sources than fishing mortality. This is mainly barrier mortality 
during downstream migration. 

ΣA Total anthropogenic mortality rate, i.e. the sum of ΣF and ΣH.  

  

 

7.2 Yellow eel anthropogenic mortality rate (𝑭෡) 

One of the stock indicators that needs to be reported to the EC is the total anthropogenic mortality rate 

ΣA (Table 7-2). ΣA is defined here as the yellow eel fishing mortality over all ages, the silver eel fishing 

mortality, and the silver eel barrier mortality (see Paragraph 7.4). The yellow eel fishing mortality rate 𝐹෡ 

is used as input to estimate the stock indicators (Paragraph 7.4) 

 

In this section the yellow eel anthropogenic mortality rate 𝐹෡ is estimated. It is defined as the yellow eel 

fishing mortality from both commercial and recreational catches. Yellow eel barrier mortality is not 

estimated, because it is expected to be very low and because it will not influence the estimation of the 

yellow eel standing stock, because it is already accounted for implicitly in the estimate of the yellow eel 

standing stock. However, it might cause for a small underestimation of the anthropogenic mortality. 

 

The yellow eel fishing mortality rate (𝐹෡) is estimated as a function of the proportions of retained catches 

and the estimated biomasses of the standing stock, following the equation: 

 

𝐹෠ = -log(1 - CatchR/(Biomass+ CatchR)) 
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where CatchR is the retained catch of yellow eel by commercial and recreational fisheries. Biomass is the 

biomass of yellow eel (≥ 30 cm, tonnes) as estimated in Chapters 3 and 4. This calculation of the fishing 

mortality is based on the assumption that all mortality during a year occurs at once. All fishing mortality 

of yellow eel is assumed to take place before the surveys are conducted. The main fisheries on eel is 

from May to August, because of the fisheries closure from September to 1 December (part of the Dutch 

EMP5). Most of the electric dipping net surveys in regionally managed waters, ditches, and also the FYMA 

survey in lakes IJsselmeer and Markermeer (Chapter 4) take place in the autumn after the period with 

the main fisheries. 

 

Based on the equation above, 𝐹෠ is calculated for each period and scenario (Table 7-2). The biomasses 

were estimated in Chapter 3 and Chapter 4 and are presented in Table 5-3 and the yellow eel landings in 

Table 2-1.  
 
 
Table 7-2 Mean yearly yellow eel biomasses, mean yearly retained catches (landings) and mean yearly 

fishing mortality rates (𝐹෠) for yellow eel for each period (scenario 2). The biomasses are derived from 

Table 5-3 and the total yellow eel removals (landings) from Table 2-1. 

 Yellow eel 

period Standing stock Biomass 
(tonnes) 

Retained catches 
(commercial and 

recreational, tonnes) 

Fishing mortality rate (𝐅෠) 

2006-2008 3,280 725 0.20 
2009-2011 5,093 309 0.06 

2012-2014 5,034 223 0.04 
2015-2017 4,773 201 0.04 
2018-2020 3,869 278 0.07 

 
 

7.3 Silver eel anthropogenic mortality 

The silver eel anthropogenic mortality proportion α represents the fishing and barrier mortality during 

migration from freshwater to the sea (Chapter 6). The mortality is calculated as the proportion of losses 

due to anthropogenic mortality relative to the silver eel biomass at the start of migration:  

 

𝛼 = 1 − (𝐵௦௧௔௥௧ − 𝐶𝑎𝑡𝑐ℎ𝑅) ∗ (1 − 𝑀௕௔௥௥௜௘௥)/𝐵௦௧௔௥௧  
 

Where Bstart (Table 7-3) represents the silver eel biomass before silver eel mortalities (migration and 

fisheries) have occurred; CatchR, (Table 2-1)  represents the retained silver eel catch; and Mbarrier 

(Chapter 6) represents the proportion barrier mortality. The parameter 𝛼 is calculated for each 

assessment period (Table 7-3).  

 

As for yellow eel mortality, the fishing mortality of silver eel is assumed to take place before the surveys 

are conducted (see Paragraph 7.1). Therefore, the silver eel biomass estimate before anthropogenic 

mortality Bstart is assumed equal to the sum of the estimated standing stock biomass in autumn and the 

silver eel landings. 

 

 

 

 

 

 

 
5 With the exception of the water board Wetterskip Fryslan, where fishing in September - November is allowed due to a quota 
system. 
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Table 7-3 Silver eel biomass standing stock (as estimated in Chapter 3 and Chapter 4), total silver eel 
retained catches (CatchR), the biomass prior to anthropogenic mortalities (Bstart), the barrier mortality 
proportion (Mbarrier) and the total anthropogenic mortality proportion during migration from freshwater to 
the sea (𝛼) for scenario 2. 

Silver eel 

Period Standing Stock 

biomass (Ch3,4 
and5) 

CatchR 

(commercial) 

Bstart Barrier mortality 

proportion 
(Mbarrier) 

Anthropogenic 

mortality 
proportion (𝜶) 

2006-2008 769 280 1,049 0.17 0.37 
2009-2011 999 175 1,174 0.16 0.29 
2012-2014 1,521 140 1,661 0.14 0.21 

2015-2017 1,652 143 1,795 0.11 0.18 
2018-2020 1,113 201 1,314 0.13 0.26 

 

 

7.4 %SPR, ΣA, Bcurrent and Bbest 

To calculate the Lifetime Anthropogenic Mortality rate, ΣA, yellow eel and silver eel mortality estimates 

were split into a fishing and a barrier component. Barrier mortality is only estimated for downstream 

migrating silver eel and is thus assumed not to affect yellow eel. The estimated yellow eel and silver eel 

mortalities (see previous paragraphs) are used to estimate the total ‘Lifetime Anthropogenic Mortalities’ 

(ΣA). To estimate ΣA, first the %SPR (Spawner per Recruit), Bcurrent (current silver eel escapement) and 

Bbest (best possible current silver eel escapement) are estimated. The basis for the methods used is 

formulated by ICES (WGSGIPEE, 2010a & 2011). 

 

To estimate %SPR, the parameter 𝛼 (percentage of silver eels that die during migration, Paragraph 7.3), 

and β, the proportion silver eel production out of the best possible silver eel production are used. 

Parameter 𝛼 is calculated in Paragraph 7.2, and parameter β is calculated using the demographic model 

(Chapter 4). However, the survey data for lakes IJsselmeer and Markermeer are not used in the model. 

Instead, based on the matrices 𝐀௙ and 𝐀௠ (Paragraph 4.2), the age and sex specific maturation 

probability (𝑀𝑔𝑖), the lengths at mid-age of the age classes and the length-weight relationships (Figure 

2-4, Chapter 2), a ratio between the maturing biomasses for 𝐹 = 0 and for fishing mortalities equal to 

the values as estimated in paragraph 7.2 (𝐹ො;Table 7-2) was calculated. This ratio of the maturing 

biomasses is expressed as the proportion silver eel production out of the best possible production (if no 

mortality had taken place). This proportion is represented by the parameter β. Subsequently, the %SPR 

is estimated as: 

 

%𝑆𝑃𝑅 = 100 ∗  𝛽 ∗ (1 −  𝛼) 
 
The estimate of the current escapement of silver eel Bcurrent is equal to the surviving part of the starting 

value of silver eel (Bstart) after removal of all silver eel anthropogenic mortalities and is calculated as:  

 

𝐵௖௨௥௥௘௡௧ = (𝐵௦௧௔௥௧ − 𝐶𝑎𝑡𝑐ℎ𝑅) ∗ (1 − 𝑀௕௔௥௥௜௘௥) 

 

Bcurrent and %𝑆𝑃𝑅  are used for the estimate of Bbest (the best possible escapement of silver eel, if all 

anthropogenic mortalities for yellow and silver eel are zero). Bbest is calculated as: 

 

𝐵஻௘௦௧  =  𝐵௖௨௥௥௘௡௧/%𝑆𝑃𝑅 
 

Subsequently, the Lifetime Anthropogenic Mortality rate is calculated as: 

 
𝛴𝐴 =  −ln (𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡/𝐵𝑏𝑒𝑠𝑡) 

 

The indicators %SPR, Bcurrent, Bbest and 𝛴𝐴 were calculated for five different periods (Table 7-4). The 

results show that since the first period (2006-2008) the yellow and the silver eel stock biomass have 
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increased until the latest period. The starting value of silver eel (Bstart, Table 7-4) increased from 1,049 

tonnes in 2006-2008 to 1,795 tonnes in 2015-2017). In the latest period (2018-2020), however, it 

decreased with almost 500 tonnes to an estimate of 1,314 tonnes. The anthropogenic mortality rate ΣA 

showed a decreasing trend, with a huge decrease between the first and second period, and a slower 

decrease until 2015-2017. However, in the most recent period, the anthropogenic mortality increased 

again, to a value of ΣA = 0.79 (corresponding to 55% mortality). This is due to a lower estimate of the 

standing stock compared to previous years, as well as an increase in the landings (344 tonnes in 2015-

2017 vs. 479 tonnes in 2018-2020, Table 7-4). The results will be discussed in more detail in Chapter 8. 

 

 
Table 7-4 Overview of all stock indicators per period. Yellow eel and silver eel stock estimates refer to eel 
(≥30 cm). Values are for scenario 2 (best guess estimate, see Chapter 3). Values for Bcurrent (tonnes) and 
ΣA for the other scenarios are listed in Table 7-5. 
  

2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Yellow eel  Yellow eel stock (tonnes) 3,280 5,093 5,034 4,773 3,869 

Retained catch (tonnes) 725 309 223 201 278 

𝐹෠ 0.20 0.06 0.04 0.04 0.07 

β  0.27 0.66 0.73 0.74 0.61 
       
Silver eel  Silver eel stock (tonnes) 769 999 1,521 1,652 1,113 

Retained catch (tonnes) 240 175 140 143 201 
Mortality Barriers (prop) 0.17 0.16 0.14 0.11 0.13 
𝜶 0.37 0.29 0.21 0.18 0.26 
      
Bstart (tonnes) 1,049 1,174 1,661 1,795 1,314 
Bcurrent (tonnes) 634 837 1,311 1,463 974 
Bbest (tonnes ) 3,759 1,791 2,270 2,420 2,153 

       
Lifetime %SPR (spawner per recruit) 16.9% 46.8% 57.8% 60.5% 45.2% 

%LAM (anthropogenic mortality %) 83.1% 53.2% 42.2% 39.5% 54.8% 

ΣA (anthropogenic mortality rate) 1.78 0.76 0.55 0.50 0.79 

ΣH (barrier mortality rate) 0.22 0.19 0.20 0.18 0.18 

ΣF (fisheries mortality rate 1.56 0.57 0.35 0.33 0.61 

 

 

 
Table 7-5 Bcurrent (tonnes) and ΣA for all 3 scenario’s. The scenario’s represent the uncertainty of main 
assumptions in the static spatial model. Scenario 2 is the best guess scenario (Chapter 3). 

 Scenario 2006-2008 2009-2011 2012-2014 2015-2017 2018-2020 

Bcurrent 

1 236 249 344 376 317 

2 (best guess) 634 837 1,311 1,463 974 
3 756 1,034 1,662 1,861 1,204 

ΣA 

1 3.72 2.01 1.51 1.42 1.95 

2 (best guess) 1.78 0.76 0.55 0.50 0.79 

3 1.55 0.64 0.46 0.42 0.67 
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8 Evaluation of the EMP 
 

8.1 Precautionary approach and limit reference points 

In this chapter the impact of the EMP is evaluated using the methods as developed by ICES (2014). To 

be able to evaluate the status of the eel stock, ICES (2014) developed a precautionary approach (PA) 

framework. The PA framework uses limit reference points (Blim and Flim, Table 8-1) reflecting stock states 

that should be avoided. Within the eel framework, the limit reference points are set such that they take 

the uncertainty of the limit reference points into account, hence the precautionary reference points (Bpa 

and Fpa, Table 8-1) are set at the same value as the limit reference points (Blim and Flim). 

 

For the eel stock, no reference points reflecting the total eel stock have been established. The eel stock 

is divided over many water bodies in many countries, also outside the EU. This makes an assessment of 

the total eel stock and the calculation of reference points extremely difficult. Therefore, a precautionary 

diagram is developed for the eel case, such that it can be used by each MS separately. Because the 

reference points for the ICES approach (Blim, Flim, Table 8-1) had not been established for eel, alternative 

biomass and mortality reference points were developed (ICES, 2014; Table 8-1).  

 

Blim: A universal provisional biomass reference point (Blim) is a level of exploitation which provides 30% 

of the pristine (no anthropogenic mortality ever) spawning stock biomass (B0). In 2002, ICES advised to 

set the biomass reference point (e.g. Blim) above the universal value, at a value of 50% of the virgin 

spawning-stock biomass, to account for uncertainty, such that Bpa = Blim. The EU (Council Regulation 

1100/2007), however, decided to set Blim at 40% of B0, in-between the universal level (30%) and the 

level advised by ICES (50%). 

 

Alim: Eel experience relative high levels of anthropogenic mortality in addition to fishing mortality 

compared to other commercially exploited stocks. Therefore, the mortality reference point (Alim) includes 

all anthropogenic mortality (A) and not only the fishing mortality (F). The EU Eel Regulation (Council 

Regulation 1100/2007) has set the limit for the escapement of silver eel (Blim) at 40% of the pristine 

escapement (B0). Alim is derived from Blim as follows: ΣA=-ln(40%)=0.92 (ICES 2018). Thus, an eel stock 

with a biomass of escaping silver eel of 40% of B0 is estimated to correspond to a lifetime anthropogenic 

mortality limit of Alim = 0.92. At low biomass, however, the anthropogenic mortality advised is reduced, 

to reinforce the tendency for the stock to rebuild (ICES, 2018).  

 

The status of a local eel stock (within an eel management unit) is in an undesirable state if it is below 

either Blim or Alim. 

 
Table 8-1 Reference points and stock indicators needed for the precautionary approach. 

Reference point Definition Value 

Blim Biomass limit below which a stock is considered to have reduced reproductive 
capacity. 

40% * B0  

Alim Mortality rate limit above which a stock decline is expected. 0.92 

Stock indicator   

B0 Silver eel biomass without any anthropogenic influences (pristine biomass). 10,400 t 

Bcurrent  Silver eel biomass that currently (assessment year) escapes to the sea to spawn. Table 8-2 

ΣA Life time anthropogenic mortality; the fishing mortality and the mortality outside 
of fisheries (HPS’s, pumping stations etc.). 

Table 8-2 
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8.2 Status of the eel stock in the Netherlands 

To assess the stock status, first the current silver eel escapement biomass (Bcurrent) in relation to the 

estimated pristine situation (B0) is calculated (Paragraph 7.3, Table 8-2) and subsequently plotted 

against the current lifetime anthropogenic mortality rate (ΣA, Table 7-4, Figure 8-1).  

 

The evaluation demonstrates that the status of the eel in the Dutch waters is still in the ‘red’ area of the 

precautionary diagram (Figure 8-1) and thus remains in a situation regarded as undesirable, with high 

mortality and low biomass. The current biomass of escaping silver eel is 9.4% of the pristine situation 

which is below the target of 40%. The value of the current lifetime anthropogenic mortality (ΣA = 0.79) 

lies below Alim (Alim  = 0.92). However, the recommended mortality at the current estimate of the 

percentage of escaping silver eel is below the current anthropogenic mortality (Figure 8-1, ‘red area’). 

 

 
Table 8-2 Stock indicators used to evaluate the impact of the EMP on the biomass of escaping silver eel 
and anthropogenic mortality. Biomasses are in tonnes (t). 
Period B0

* Bcurrent 100* Bcurrent /B0 ΣA 

2006-2008 10,400 t 634 t 6.1% 1.78 

2009-2011 10,400 t 837 t 8.1% 0.76 

2012-2014 10,400 t 1,311 t 12.6% 0.55 

2015-2017 10,400 t 1,463 t 14.1% 0.50 
2018-2020 10,400 t 974 t 9.4% 0.79 

* Excluding coastal waters (2,600 t)  

 

 

Figure 8-1 ICES modified precautionary diagram presenting the status of the eel stock in the Netherlands 
in 2006-2008, 2009-2011, 2012-2014, 2015-2017 and 2018-2020 with respect to management targets. 
The horizontal axis represents the status of the stock in relation to pristine conditions. The vertical axis 
represents the impact made by anthropogenic mortality. ΣA = Lifetime anthropogenic mortality, presented 
as a rate. Note that the x-axis is on a logarithmic scale. 
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8.3 Discussion of the status of the eel stock in the Netherlands 

 
The status of the eel stock in Dutch waters remains in a situation regarded as undesirable with low 

biomass. In the precautionary diagram (Figure 8-1), the horizontal axis demonstrates the current 

biomass in relation to the best possible biomass, while the vertical axis illustrates the level of 

anthropogenic mortality on the stock. Below the interpretation of the axes is discussed in more detail. 
 
8.3.1 Anthropogenic mortality (vertical axis in Figure 8-1) 

A reduction in lifetime anthropogenic mortality (ΣA, Figure 8-1) can be achieved by reducing fishing 

mortality and barrier mortality. A reduction in anthropogenic mortality is therefore the direct result of the 

measures taken by a MS. In the Netherlands, the implementation of the EMP has resulted in a reduction 

in ΣA between the first period (2006-2008) and the second-last period (2015-2017) from 1.78 to 0.50, 

corresponding to an increase in the percentage spawner per recruit (%SPR) from 17% to 60% (Table 

7-4). This reduction in ΣA was mainly the result of a decrease in fishing mortality, both commercial and 

recreational: retained catches (landings) of both commercial and recreational fisheries strongly 

decreased between 2006-2008 and 2015-2017. The greatest reduction in mortality was achieved in the 

second period (2009-2011), showing the result of the implementation of the eel management plan 

(2009), as a result of which the fishing mortality has reduced to a large extend (from ΣF =1.56 in 2006-

2008 to ΣF = 0.57 in 2009-2011, Table 7-4). However, in the most recent period (2018-2020), the 

mortality rate has increased from 0.50 to 0.79 (Table 7-4, Figure 8-1). This is caused by an increase in 

the commercial fisheries (landings and effort), mainly in the lakes IJsselmeer and Markermeer (Table 2-1 

& Appendix A0).   

 

Barrier mortality (Mbarrier) showed a decrease from 17% to 13% (Table 6-3) from 2006-2008 to 2018-

2020. The reduction is caused mainly due to measures at HPS’s (new management scheme), replacing 

some pumping stations with ‘fish-friendlier’ pumping types and differences in eel distribution. From 

2015-2017 to 2018-2020, the barrier mortality increased from 11% to 13% (Table 6-3). This increase is 

not caused by new barriers (no HPS’s or pumping stations were placed during this period), but because 

of a difference in the distribution of eel.  

 

Lifetime anthropogenic mortalities were estimated using the retained catches and barrier mortalities in 

relation to the standing stock. The current ΣA is calculated by taking the sum of the mortalities of all 

ages. This is not the same as the ΣA that new recruits (glass eels) are expected to experience 

throughout their inland life span. The ΣA in a new cohort recruits may differ from the current ΣA because 

of different mortality rates compared to the current rates. This could be a result of effects of the 

measures taken to reduce mortality, such as closed areas (main rivers and some large canals) and 

reductions in fishing mortalities. The estimated ΣA consist of fisheries mortality over all life stages and 

barrier mortality of silver eel. The silver eel biomass is a result of the surviving yellow eel after yellow eel 

mortality occurred. Therefore, silver eel mortality contributes usually less to ΣA compared to yellow eel 

mortality.  
 
 
8.3.2 Biomass escaping silver eel (horizontal axis) 

Between the periods 2006-2008 and 2015-2017, there was an increase in the biomass estimate of 

escaping silver eel (Bcurrent) in every period, with the largest increase between 2009-2011 and 2012-

2014. However, there was a decrease in the estimate of escaping silver eel biomass between the period 

2015-1017 and 2018-2020 (horizontal axis; Figure 8-1). Large differences between periods in biomass 

were not expected as an increase in glass eel recruitment will, at the earliest, result in an increase of 

silver eel after 3-20 years. However, glass eel recruitment has not significantly increased after the 

implementation of the EMP in 2009 (ICES 2020). The level of glass eel recruitment, depends only for a 

small part on the status of the Dutch part of the eel stock. If one EMU alone, such as the Netherlands, 

would reduce all anthropogenic mortality to zero, a recovery of the European eel stock is still not 

necessarily expected. In order to maximize the chance of recovery, maximum protection of European eel 

will have to be accomplished throughout its natural range, within and outside Europe. The responsibility 

for improvement of eel stock lies with all countries in the natural range of the eel distribution.  
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9 Conclusions and recommendations  
 

9.1 Biomass estimates 

The EC requested the MS’s to evaluate the status of the European eel stock. In this report, the data and 

methods which were used to estimate the stock indicators for the Dutch part of the eel stock (Bbest, 

Bcurrent, B0 and ΣA) were described. However, the estimates of the stock indicators used to evaluate the 

status of the stock (Bcurrent, Bbest , B0, and ΣA, Table 7-4) need to be interpreted with care due to the 

significant level of uncertainty surrounding these estimates. In this final chapter, the used methodologies 

and results are discussed. Furthermore, recommendations are provided for further improvements of the 

models.  

 

The main results of this assessment are that in the most recent period (2018-2020), the current silver 

eel escapement Bcurrent (974 tonnes), is still very much below the target of 40% of the estimated pristine 

situation (B0). The anthropogenic mortality (ΣA = 0.79) is below Alim (Alim  = 0.92). However, at the 

current estimate of Bcurrent, the anthropogenic mortality was above the mortality as the target set in the 

EMP (Figure 8-1). Therefore, the status of eel in Dutch waters remained in a situation regarded as 

“undesirable” for both the silver eel escapement and anthropogenic mortality (red region in Figure 8-1). 

 

After implementation of the EMP in 2009 the estimate of Bcurrent increased in every reporting period until 

2015-2017: from 634 tonnes in 2006–2008 to 1,463 tonnes in 2015-2017. However, in the most recent 

period (2018-2020) the estimate of Bcurrent declined again to 974 tonnes. The decline is mainly a result of 

a lower estimate of the starting silver eel stock (Bstart), which results from a lower estimate of the yellow 

eel stock: from 4,773 tonnes in 2015-2017 to 3,869 tonnes in 2018-2020 (Table 7-4). This decline in 

yellow eel biomass estimate is a direct result from the national surveys other than the large lakes and 

from the regional (WFD) surveys (Chapter 3). The biomass estimated in the national surveys other than 

the large lakes declined from 2842 tonnes in 2015-2017 to 1,673 tonnes in 2018-2020 (Table 5-2). The 

main decline was observed in the ‘Benedenrivieren’ (Figure 3-4) which declined from 2,147 tonnes to 

1,142 tonnes between 2015-2017 and 2018-2020 (Table 3-9). The ‘Benedenrivieren’ is one of the larger 

water bodies and (like all large rivers) the eel fishery is closed. Because the ‘Benedenrivieren’ comprises 

such a large area, the influence of the survey outcome in this area is large on the total biomass. The 

total biomass estimate in the regional waters (WFD waters) also declined from 2,265 tonnes in 2015-

2017 to 1,791 tonnes in 2018-2020 (Table 5-2). Within the regional waters, Wetterskip Fryslân is highly 

influential because it represents the highest biomass estimate (Appendix A3). In this region, there is also 

a lot of restocking of glass eel, which could cause fluctuation in the biomass estimate between periods, 

because also waters with glass eel restocking are monitored. Since eel fishing is based on a yearly set 

quota (36.6 tonnes for all fishermen), the lower biomass cannot be related to increased catches. The 

biomass in lakes IJsselmeer and Markermeer showed an opposite trend between 2015-2017 to 2018-

2020, with an increase in the standing stock biomass from 299 tonnes to 476 tonnes (Table 5-2). 

However, also the estimated fishing mortality is very high in lakes IJsselmeer and Markermeer (F = 

1.10) and the landings have also increased (from 193 to 308 tonnes, yellow and silver eel combined, 

Table 4-2). 

 

For all components of the standing stock biomass estimates, the accuracy is low. For the static spatial 

model (Chapter 3), main sources causing low accuracy are the selectivity of the electric dipping net and 

the habitat preference (Paragraph 3.2). However, apart from the selectivity and the habitat preference 

there is probably also a high level of sampling error. Even though the water bodies have been sampled at 

least once in every three-year period, and the number of hauls is substantial, the amount of sampling 

per water body is still small. Variation between years can arise due to the condition during sampling 

(water level, weather, exact location, time in the year, sampler), which cause additional sampling error. 

Also, high variation may be caused by sampling in water bodies were restocking occurred in recent 

years. How much of the changes in eel standing stock biomass is caused by sampling error is impossible 

to say. Inaccuracy in the demographic model is mainly caused by low accuracy of many components of 

the input data. The biological keys and natural mortality (Chapter 2) are uniform in time and the same 
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keys are assumed as for all water bodies. Also, the relative selectivity by the survey gear per length is 

unknown. These cause uncertainty in the estimated fishery mortality values, and as a consequence in the 

biomass estimate. For the large lakes Grevelingen and Randmeren, strong assumptions had to be made, 

also causing a large amount of uncertainty. 

 
9.1.1 Pristine biomass estimate (B0) 

 

Bcurrent and ΣA are not the only stock indicators that affect whether the state of the eel stock in the 

Netherlands is in a desired state and reaches the goals set out by the Eel Regulation (Chapter 1). The x-

axis of the precautionary diagram represents the ratio between Bcurrent and B0 and thus depends highly on 

the estimate of B0. The B0 value for inland waters in the Netherlands is set at 10,400 tonnes. However, 

the uncertainty of the value is large and has been subject to discussion. Initially the pristine silver eel 

biomass (B0) in the Netherlands, was set at 10,000-15,000 tonnes (Klein Breteler, 2008). In a first 

review (Eijsackers et al., 2009) it was concluded that the range was wider and that B0 was between 

6,500-20,250 tonnes. However, ICES (review of the national eel management plans, ICES 2010b) did 

not accept all arguments of Eijsackers et al. (2009) and set B0 at 13,000 tonnes. A second review 

(Rabbinge et al., 2013) concluded that the method to calculate B0 was fundamentally of good quality 

with respect to adhering to the guidelines set by the Eel Regulation. However, the estimation of the value 

of B0 is generally acknowledged to be extremely difficult. Due to limitations in data from earlier periods, 

the variation in numbers per water body, historical restocking levels and uncertainties about density 

dependent natural mortality, it is effectively impossible to estimate a reliable estimate of B0 for the 

Netherlands. 

 

9.2 Biological keys 

The maturity-at-length and the sex ratio-at-length were analysed with a GAM instead of a binomial GLM 

(Chapter 2). GAM’s are non-linear and therefore do not have a forced shape. In contrast, a binomial GLM 

has a fixed shape between 0% and 100%. Because of this, the previous use of the binomial GLM had 

strong assumptions, such as a 100% male sex ratio at small lengths in the sex ratio-at-length key and 

100% chance of maturation at large lengths in the maturation-at-length key. These assumptions did not 

fit the data distribution and biology very well. Because GAM’s do not have fixed shapes of the fitting 

curve, GAM curves fit the data much better compared to the binomial GLM. On the other hand, in a GAM 

no underlying relationship is assumed, therefore the final shape has to be chosen by vision and is 

consequently partly a result of expert judgement. 

 

The new maturity-at-length had substantial impact on the final results, because a smaller proportion of 

eel was assumed to grow into silver eel within a year compared to the binomial GLM. The growth-at-

length curve (Paragraph 2.6) also changed. As growth in eel is different in that eel can grow to very large 

lengths, a von Bertalanffy growth fit was not necessarily expected. However, it fitted the data quite well 

and was therefore used for this assessment.  

 

Natural mortality depends on many factors, such as predation, water temperature, pollution and food 

conditions, which makes it a difficult parameter to assess. Natural mortality is also unlikely to be the 

same for all stages and is also not constant through time. The natural mortality used in the demographic 

model (Chapter 4) is based on Dekker (2000), who made a best guess based on literature. The above-

mentioned factors cause the used value of natural mortality (M = 0.138) to be highly uncertain. 

 

9.3 Static spatial model 

9.3.1 Regionally managed waters 

In the biomass assessment for the regional managed water bodies WFD fish survey data was used 

(Chapter 3). A problem with this data is that not all water bodies are sampled in the same manner. Some 

water boards sample more frequently than others. Also, even though the sampling intensity has 

increased, the sampling does not cover all water bodies. The choice of the waterbody, but also the 
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location and timing within the water body are important for accurate comparison of the density between 

water bodies and years. As the sampling has a time frame of six years, a six-year moving average was 

calculated. For each three-year period, the six years closest to the three-year period were chosen. This 

allows one to detect changes over time. This differs from previous reports (Bierman et al., 2012; van de 

Wolfshaar et al., 2015 & 2018), were a single estimate for all years was used. As a consequence, 

irregular or inconsequent sampling has a higher influence on the final biomass estimate. 

 
9.3.2 Nationally managed waters 

The most important causes of uncertainties in the biomass estimates of the nationally managed waters 

are: 

 
 In the assessment of the nationally managed waters, the biomass estimate of one river section 

(Benedenrivieren) dominated the overall biomass estimate of the nationally managed waters. 

The Benedenrivieren have a relative large surface area (Figure 3-4), and as a consequence a 

high biomass estimate, but also the survey density is high (Table 3-6). In this area, the influence 

of silver eel migrating from other areas or countries may be high, because it is the area closest 

to the coast where silver eel might concentrate before starting migration. However, because the 

water body is also relatively wide, the assumption of the habitat selection has a large impact 

compared to other smaller waterbodies.    

 
 Different river regions are surveyed in different months. As a result, water temperature, eel 

behaviour and silver eel migration activity may differ because of the sampling period, causing 

additional noise in the estimations. 

 
 In the current assessment, the eel stock in the large lakes (IJsselmeer, Markermeer, Randmeren 

and Grevelingen) was determined using the demographic model and the landings. This method is 

a bit cumbersome. If research was done on a better understanding of eel distribution in the lakes 

using all available surveys, upscaling eel densities from the littoral zone to lakes as a whole 

could be carried out to validate the results from the demographic model.  

 

9.4 Demographic model 

The main decreasing stock trends since 1989 in lakes IJsselmeer and Markermeer could be explained 

reasonably well by the demographic model (Chapter 4), but only to a certain extent. For example, the 

increase in eel numbers 7+ years after arrival in Lake IJsselmeer in recent years is not captured by the 

model. Also, small changes in the data are not captured. For this report, several updates were made to 

the model. The most important updates of the demographic model were: 

 
 The model is fitted to survey data of lakes Ijsselmeer and Markermeer together, due to scarcity 

of data in lake Markermeer in some years. 

 Different periods for which a single F estimate was calculated were changed such that the 
periods still represented the changes in eel fisheries management, but also such that the number 
of years for each period does not fluctuate too much. 

 The length-class based fit between model and data that was previously used, has been changed 
to an age-class based fit to allow for a better comparison between the model and the survey 
data. 

 The moment of comparison of the model with the survey data was moved from April to October, 
to better fit the ages of the individuals in the survey data. 

 The updated biological keys were used as input and a different initial sex ratio was assumed. 

 

Several sensitivity analyses showed that the estimated F value by the demographic model is sensitive to 

differences in the biological keys. Although the only parameter that can change over time is the fishing 
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mortality, the model is sensitive to the assumed maturity-at length, growth rate and initial sex-ratio. As 

eel mature to silver eel they migrate to the ocean. This means that they leave the lakes, which means 

that they are also ‘removed’ from the model. If this happens at smaller lengths, eel have left the system 

at an earlier age, which has consequences for the estimated F. 

 

The demographic model also assumes that the selectivity of the survey gear (FYMA, Chapter 2) is equal 

for all length classes at ages from 2 years and older. However, the selectivity of the survey gear is not 

known. Changes in the assumption of the survey gear at length will influence the outcome. Similarly, a 

single estimate of F is calculated for all eel above the minimum landing size. 

 

Last, the estimate of natural mortality is highly uncertain. It is assumed constant for all ages and sizes, 

which is unlikely to be true as smaller eel are more prone to, for example, predation. Different 

assumptions of M will result in different estimates of F, and thus in a different biomass estimate.  

 

9.5 Barrier mortality 

Water boards did invest substantially in improving migratory opportunities at migration barriers, but 

most solutions targeted to facilitate upstream migration. Potentially, this has improved glass eel 

immigration into inland waters and as a consequence indirectly enhanced the potential silver eel biomass 

starting to migrate in the different waters. Mitigation of mortality in a downstream direction is more 

difficult since it requires replacing pumping stations or HPS’s or deflecting silver eel to alternative routes 

with no mortality, for which effective measures are still largely lacking (Kroes et al., 2013).  

 

Much investment is still being carried out by the water boards to improve upstream migration along 

barriers into and within inland Dutch waters (measures for to the WFD). This may have led to an 

increased rate of immigration of glass eel into inland waters and. However, little is known on the 

immigration of glass eel and distribution of glass eel over inland water, and no quantification of the 

overall outcome of these migration mitigation measures at barriers can be made at present. 

 

As was demonstrated for a validation with extensive telemetry studies and mark-recapture experiments 

for the North Sea Canal catchment (see Appendix C3), the estimate in the model as described in Chapter 

6 is reasonable. 

9.6 Unquantified sources of anthropogenic mortality: 

The main sources of mortality of European eel in the Netherlands are certainly the fishing mortality and 

the mortality caused by barriers. However, there are other sources of mortality that have not been 

quantified and may be substantial. The main sources are: 

 

 Poaching (unreported landings or illegal removals). 

 Yellow eel mortality in HPS’s and pumping stations. 

 Impact of (human-induced) viruses, parasites and pollution. 

 Bycatch mortality of undersized eel. Most landings originate from fykes. Only a small amount of 

undersized by-catch is expected in this fisheries. However, also (~ 20%) of the catches are caught 

with a longline (Dutch: ‘hoekwant’). Undersized bycatch and its survival of this gear is unknown. 

 Catch and release mortality in recreational fisheries. 

 Mortality by ship propeller strike. Sometimes, substantial numbers of damaged silver eels are 

found at the shores of the river Waal where heavy shipping traffic occurs. Also, in our telemetry 

studies, we still have a substantial part of silver eel disappearance during downstream migration in 

rivers and canals that cannot all be attributed to other mortality causes. Ship traffic impact is a 

potential candidate factor in these cases. So far, these observations are only anecdotal. There are, 

however, no research or dedicated studies available on the impact of ship traffic on silver eel. This 

can be tackled in meta-analyses of many telemetry studies combined, which is currently 

attempted by a cooperation of researchers with the European Tracking Network and EU-Cost 

action. 
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9.7 Recommendations 

In this chapter an overview of (previous) recommendations for further adjustments to improve the 

quality of the assessment for the next evaluation is given.  

 
9.7.1 Spatial Model 

One of the most important sources of uncertainty in the spatial model are the catch efficiency and the 

habitat preference. The recommendation to study these effects has been made since the first evaluation 

report (Bierman et al., 2012), but no progress was made. The reason is that these assumptions are 

extremely difficult to assess. However, it is still needed to at least get some more knowledge of both 

uncertainties. In addition, especially for wider water bodies, assumptions of the distribution of eel over 

the water body may lead to unrealistic values. 

 
9.7.2 Demographic Model 

The assessment outcome is sensitive to the biological keys. To interpret present-day data or historical 

stock trends, a good index of recruitment, trends in sex-ratios, sex specific growth rates, natural 

mortalities and migration rates are required. Because eel recruitment has fallen sharply, it is probably 

unrealistic to assume that vital parameters have remained constant over time. At present the biological 

parameters are assumed to be constant over the entire time period. As more biological data is sampled, 

biological keys that are time or location specific should be analysed further. In addition, the natural 

mortality estimate is only a crude estimate and assumed to be constant over all lengths, ages and 

periods. A more realistic estimate of natural mortality should be investigated. Also, the calculation on the 

large lakes is based assumptions and research should be was done on a better understanding of eel 

distribution in the lakes using all available surveys.    

 
9.7.3 Silver eel migration model 

For the silver eel migration model as used for boezem and national waters (2nd and 3rd hierarchy), the 

division of silver eels that end up at a certain barrier site over the different migration routes is needed. 

For some sites, good data on route selection is available, e.g. at the HPS’s in the Meuse (Winter et al., 

2006 &, 2007; Jansen et al., 2007) and the large ship lock/sluice/pumping station complex at IJmuiden 

(Winter, 2011). However, on most sites, divisions of silver eel are mainly based on assumptions and 

extrapolations from research on other sites. 

 

In addition, for some sites conditions have changed and updated estimations are needed to determine 

current mortality losses due to pumps or HPS’s. Mortality depends on the eel length and discharge 

patterns. In future evaluations, additional studies and data need to be incorporated to determine overall 

HPS’s mortality under the recently changed conditions. 

 
9.7.4 Immigration of glass eel along barriers 

To quantify and determine the effects of improved migratory opportunities for glass eel and how this 

results in increasing local yellow eel production and silver eel escapement, dedicated studies on 

population estimates of glass eel at barriers can be carried out, as has been done for the North Sea 

Canal catchment, with an estimated 10 million glass eels entering at IJmuiden in 2018 (Winter et al, 

2020). When these approaches are carried out alongside the main immigration routes for glass eel into 

Dutch waters, such a quantification can be made.   

 
9.7.5 Restocking 

In the Netherlands restocking of glass eel and ongrown eel (eels that are grown in culture facilities for 

some time before being restocked, also called “pre-grown”, ICES 2016) exists for decades. After the 

decline of glass eel availability, this commercial restocking lessened due to the increase of the price of 

the glass eel. After restocking became one of the management measures in the Dutch eel management 

plan (EMP), restocking was financed by public money, causing the amount of restocked glass eels and 

ongrown eel (elvers) to increase (from 818 kg in 2006-2008 to 3024 kg in 2018-2020, ICES 2020b). The 
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restocking is commissioned by the ministry of Agriculture, Nature and Food quality (LNV) and is executed 

by the DUPAN foundation (www.DUPAN.nl), a foundation representing Eel processers, fish farmers and 

eel fishermen. Ongrown eels are usually bought from an aquaculture company in the Netherlands. The 

latest ICES advice (2020a) states: 

 

‘ICES notes that the restocking of eels, which is considered a management action in the EU 

regulation and in many eel management plans, is reliant on a glass eel fishery catch. 

Evidence shows that translocated and stocked eel can contribute to yellow and silver eel 

production in recipient waters, but information on the contribution to actual spawning is 

missing because of a general lack of knowledge of eel spawning. Internationally coordinated 

research is required to determine any net benefit of restocking on the overall population, 

including carrying capacity estimates of glass eel source estuaries, detailed mortality 

estimates at each step of the restocking process, and performance estimates of stocked vs. 

non-stocked eels. Estimation of the prospective net benefit should be carried out prior to 

any restocking activity, such as increasing silver eel escapement by restocking to attain 

stock recovery. Restocking should take place only where survival in silver eel escapement is 

high, and it should not be used as an alternative to reducing anthropogenic mortality. 

Where eel are translocated and stocked, measures should be implemented to evaluate their 

fate and their contribution to silver eel escapement. Such measures should include 

regionally-coordinated mass marking of eels to distinguish stocked eels from natural 

recruits in future scientific surveys.’ 

 

Because of the stocking practices in the Netherlands, stocked eel are indirectly included in this 

assessment, because it is not possible to distinguish between eel originating from natural migration and 

stocked eels. It is therefore recommended to follow the ICES advice and conduct the marking of all 

stocked eels before release. 

 

9.8 International “level playing field” stock indicators 

 

As many other European countries (France, UK, Ireland) are using similar spatial models to estimate 

yellow eel standing stock and silver eel production, close international cooperation and collaboration will 

enhance the quality and uniformity of these models in the future. In addition, fundamental differences 

exist among the Netherlands, Belgium, Germany and the UK with respect to converting fisheries landings 

to silver eel production, selection of the reference period and correcting for glass eel stocking when 

calculating B0. Germany, Belgium and the UK probably underestimated B0 (ICES, 2010). Standardization 

of assessment methods is of utmost importance to ensure the recovery of the European eel stock and its 

sustainable exploitation.  

9.9 Future of the eel advice (ICES WKFEA) 

In this report, the estimated key stock indicators have been evaluated in relation to management 

targets/limits as formulated in the EC Eel Regulation, using the modified ICES precautionary diagram 

(Chapter 7 and Chapter 8). However, the Advisory Committee (ACOM) of ICES is reluctant to advise on 

the status of the eel stock using these targets, because they have not been scientifically tested to ensure 

that they are precautionary and will lead to a recovery of the eel stock. ACOM therefore only analyses 

the level of recruitment compared to levels before the recruitment had dropped (ICES, 2020a). For this 

reason, the ICES workshop WKFEA “Future of the Eel Advice” was initiated (February 2020). The 

objective of WKFEA was to discuss the current advice framework, consider options for future 

assessments and draft a roadmap towards recommendations for an adapted or completely new advice 

framework on fishing opportunities and, potentially, other anthropogenic pressures on European eel. This 

has led to a roadmap describing the (ICES) workshops and (EU) projects aimed at developing a 

population model that would include the entire stock, which would lead to new management targets in a 

benchmark now proposed in 2026-2027 (ICES, 2021). 
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Appendix A0 Retained catches and effort per region 
 

Figure A1. Eel retained catches (tonnes) per region and year (source: RVO). 
 
 
 

 
 
Figure A2. Eel fyke effort (number of fyke weeks, different types of fykes combined) per region and year 
(source: RVO). ). Effort is self reported by the fishermen.  
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Figure A3. Eel effort per gear type in lakes IJsselmeer and Markermeer per year (source: RVO). Effort is 

self reported by the fishermen. Some corrections have taken place from previous graphs. 
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Appendix A1: Water Framework Directive (WFD) water types  
 

Table A1. Water body types defined within the WFD in the Netherlands that were taken into account in 

this study of standing stocks in regionally managed waters. 

Water type code Description 

M1a Buffered ditches  

M2 Weakly buffered ditches 

M3 Buffered canals (regional) 

M6a/b Large shallow canals with/without shipping 

M7a/b Large deep canals with/without shipping 

M8 Buffered peatland ditches ("laagveensloten") 

M10 Peatland canals ("laagveen kanalen") 

M14 Shallow, relatively large, buffered lakes 

M20 Deep, relatively large, buffered lakes 

M23 Shallow, large, calcium-rich lakes 

M27 Shallow, relatively large, peatland lakes ("laagveenplassen") 

M30 Weakly brackish waters (0.3 - 3 g Cl/l) 

R4 Permanent, slow flowing, upper part stream on sandy riverbed 

R5 Permanent, slow flowing, middle- or lower part stream on sandy riverbed 

R6 Slow flowing small river on sandy/clay riverbed 

R7 Slow flowing river/side stream on sandy/clay riverbed 

R8 Fresh tidal waters on sandy/clay riverbed 

R12 Slow flowing, middle- or lower part stream on peat riverbed 

R13 Fast flowing, upper part stream on sandy riverbed 

R14 Fast flowing, middle- or lower part stream on sandy riverbed 

R15 Fast flowing small river on siliceous riverbed 

R17 Fast flowing, upper part stream on calcium rich riverbed 

R18 Fast flowing, middle- or lower part stream on calcium rich riverbed 
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Appendix A2: Eel biomass per water type per period 
 

Table A2. Density and biomass of eel (≥30 cm) based on sampling data of WFD water bodies assessed 

per water type per period following scenario 2. Note that non-WFD water bodies are not included. 

   2006 - 2008 2009 - 2014 2015 - 2020 

WFD- water  
Total area 

(ha) 
Density 
(kg/ha) 

Biomass 
(tonnes) 

Density 
(kg/ha) 

Biomass 
(tonnes) 

Density 
(kg/ha) 

Biomass 
(tonnes) 

M1a 156 0.0 0.0 1.8 1.2 0.4 0.3 

M2 10 3.7 0.2 5.5 0.2 4.3 0.2 

M3 3,324 2.1 21.8 3.7 38.4 1.2 12.7 

M6a 603 1.4 2.4 5.8 10.3 6.7 12.0 

M6b 1,780 3.4 17.9 6.9 35.9 4.8 24.9 

M7a 13 3.7 0.1 9.7 0.4 6.9 0.3 

M7b 3,435 5.2 48.2 7.2 67.1 8.2 76.2 

M8 1,148 0.7 2.4 0.8 2.5 0.1 0.2 

M10 1,362 0.1 0.3 8 39.2 1.8 8.9 

M14 20,902 10.0 531.1 33.4 1,776.9 17.0 907.2 

M20 4,444 7.3 82.2 10.0 112.5 9.7 109.5 

M23 90 3.7 0.9 0.0 0.0 6.9 1.7 

M27 22,738 4.4 252.6 19.1 1,091.6 6.1 348.6 

M30 8,182 3.7 76 5 104.0 1.2 24.6 

R4 73 4.8 1.7 2.2 0.8 0.5 0.2 

R5 1,221 2.4 10.5 3.4 15.2 1.6 7.3 

R6 3,414 8.6 77.5 12.7 114.2 12.7 114.9 

R7 2,272 3.7 21.2 37.9 218.4 7.8 45.1 

R8 20 3.7 0.2 4.7 0.3 5.3 0.3 

R12 65 2.9 0.7 17.4 4.1 2.7 0.6 

R13 4 3.7 0.1 9.7 0.2 6.9 0.2 

R14 16 3.7 0.2 10.5 0.6 26.9 1.5 

R15 37 3.7 0.4 9.7 1.1 6.9 0.8 

R17 7 3.7 0.1 9.7 0.4 6.9 0.3 

R18 52 2.0 0.4 8.5 1.6 19.4 3.7 

Total  75,368  1,149.1  3,637.1  1,702.2 
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Appendix A3: Eel biomass per water board 
 

Density and biomass estimates were done in the same way as was done per water type (paragraph 

4.2.3), for each water board in the periods 2006–2008, 2009–2014 and 2015–2020. Both density 

(kg/ha) and biomass (tonnes) were estimated. Biomass estimations from the most recent period (2015–

2020) were for most water boards lower than those of the period 2009–2014. Only a few of the water 

boards had a higher estimated biomass and the estimations for the remaining were more or less similar.   

 

Table A3. Density and biomass of eel (≥30 cm) based on sampling data of WFD water bodies assessed 

per water board per period following scenario 2. Note that non-WFD water bodies are not included. 

   2006 - 2008 2009 - 2014 2015 - 2020 

Water board 

Total area 
(ha) 

Density 
(kg/ha) 

Biomass 
(tonnes) 

Density 
(kg/ha) 

Biomass 
(tonnes) 

Density 
(kg/ha) 

Biomass 
(tonnes) 

Aa en Maas 470 4.8  7.2 1.4 2.2 0.6 0.9 

Brabantse Delta 2,358 15.7 96.2 3.8 23.2 3.7 22.6 

De Dommel 391 1.0  1.3 1.7 2.1 1.4 1.8 

Drents Overijsselse Delta 13,810 4.0 141.0 9.1 319.1 4.3 149.5 

Hollandse Delta 925 4.8 11.7 10.1 24.6 6.4 15.4 

Hoogh. Amstel, Gooi en Vecht 8,623 9.8 214.5 6.2 134.6 8.4 182.7 

Hoogh. De Stichtse Rijnlanden 225 8.4 65.9 4.7 3.3 2.5 1.8 

Hoogh. Hollands Noorderkwartier 4,714 3.2 43.4 8.1 110.5 4.2 57.3 

Hoogh. van Delfland 298 4.8  4.5 9.7 8.9 4.8 4.4 

Hoogh. van Rijnland 4,679 4.8 58.4 16.4 199.8 7.5 91.6 

Hoogh. van Schieland en de Kr. 1,084 3.7 11.6 9.6 30.4 13.2 41.7 

Hunze en Aa's 2,250 4.1 25.3 8 49.8 4.9 30.5 

Noorderzijlvest 3,017 4.8  37.7 10.6 83.5 3.2 25.4 

Rijn en IJssel 518 1.8 3.0 0.4 0.8 0.3 0.5 

Rivierenland 799 6.0 15.0 4.1 10.2 6.7 16.7 

Scheldestromen 10 4.8  0.1 10.1 0.3 6.4 0.2 

Vechtstromen 2,816 7.1 53.6 9.9 74.5 9.7 73.5 

Waterschap Limburg 289 8.3 8.5 9.4 9.7 15.5 16.0 

Waterschap Vallei & Veluwe 414 0.8 1.1 2.5 3.3 2.5 3.2 

Wetterskip Fryslân 16,193 7.8 323.5 37.3 1553.2 12.3 514.2 

Zuiderzeeland 8,153 4.8  101.3 45.2 953.4 21.3 449.2 

Total    1,224.8  3,597.4  1,699.1 
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Appendix B1: Details of the demographic model 
 

Model update 

Several improvements were made in the demographic model. The changes to this compared to the 

model used in the previous eel assessment (van de Wolfshaar et al., 2018) are: 

 
- The biological keys and FYMA survey data were updated with the newest information up to 

2020. 
- The length-class based fit between model and data that was previously used has been 

changed to an age-class based fit to allow for a better comparison between the model and 
survey data. In previous versions of the eel assessment, the abundances per age class 
predicted by the model were transformed to abundances per length class such that the 
model predictions could be compared to the abundances per length class observed in the 
FYMA survey data. In the current assessment, the abundances per length of the FYMA 
survey data are converted to abundances per age class using sex-specific von Bertalanffy 
growth curves and a general length – sex ratio relationship.  

- Some biological keys have been changed (see Chapter 2):  
- Eel growth is now based on a von Bertalanffy growth curve per sex. 
- Maturation at length, sex ratio at length and the sex ratio of the recruits are now based 

on GAM analyses. 
- The age-specific model parameters (maturation, fisheries selectivity), were previously based 

on the initial length of the age class and are now based on the length at the mid-age of the 
age class. We consider this mid-length more representative for the characteristics of the 
individuals in the age class then the length at the start of the age class.   

- The moment of comparison of the model with the survey data was moved from April to 
September to better fit the timing of the collection of the survey data. 

- The model is fit to survey data of lakes Ijsselmeer and Markermeer together, due to scarcity 
of data in Lake Markermeer in some of the years. 

- Different periods for which a single F estimate was calculated were changed such that the 
periods better represented the changes in eel fisheries management (see Chapter 4) 

- The selectivity of the survey was previously assumed to differ slightly between length 
classes. We now assume an equal selectivity of the survey for all age classes, because there 
is no information on the selectivity of the survey available. 

- Small changes were made to the selectivity of the commercial fisheries (see Chapter 4). 
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Model parameters 

Table B1 Life history parameters; the length at the start of the age class corresponds to the length in 
September of each year. 

Years in 
IJsselmeer/ 
Markermeer Length per age class Maturation probability Fisheries selectivity 

 At start age 
class (mm) 

At mid age 
class (mm) 

  

 Female Male Female Male Female (𝑀௙௜) Male (𝑀௠௜) Female (𝑧௙௜) Male (𝑧௠௜) 

0.5 86 86 127 128 0 0 0 0 

1.5 165 164 202 196 0 0 0 0 

2.5 237 222 270 246 0 0 0.34 0 

3.5 301 266 330 283 0.001 0 1 0.59 

4.5 358 298 384 310 0.003 0.010 1 1 

5.5 409 321 433 331 0.010 0.053 1 1 

6.5 455 339 476 346 0.028 0.177 1 1 

7.5 496 352 514 357 0.048 0.270 1 1 

8.5 532 361 549 365 0.086 0.369 1 1 

9.5 565 369 580 371 0.124 0.369 1 1 

10.5 594 374 607 376 0.167 0.461 1 1 

11.5 620 378 632 379 0.198 0.461 1 1 

12.5 643 381 654 382 0.229 0.461 1 1 

13.5 664 383 674 384 0.260 0.461 1 1 

14.5 683 385 692 385 0.290 0.538 1 1 

15.5 700 386 707 386 0.320 0.538 1 1 

16.5 715 387 721 387 0.335 0.538 1 1 

17.5 728 387 734 388 0.350 0.538 1 1 

18.5 740 388 745 388 0.378 0.538 1 1 

19.5 751 388 755 388 0.392 0.538 1 1 

20.5 760 388 764 388 0.392 0.538 1 1 
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Table B2 Annual glass eel index based on lift net survey (survey density/haul) and female ratio (see 
Paragraph 4.4) of recruits based on the segmented regression model (Appendix B2) 

Year Glass eel index Female ratio 𝜌(𝑡)  Year Glass eel  Female ratio 𝜌(𝑡) 

1968 32.9 0.67  1995 11.1 0.69 

1969 27.1 0.67  1996 12.5 0.65 

1970 48.1 0.67  1997 12.6 0.61 

1971 36.1 0.67  1998 2.46 0.56 

1972 55.0 0.67  1999 3.7 0.52 

1973 18.8 0.67  2000 2.8 0.47 

1974 63.0 0.67  2001 0.6 0.43 

1975 84.3 0.67  2002 1.2 0.38 

1976 51.4 0.18  2003 1.3 0.34 

1977 75.0 0.67  2004 2.1 0.30 

1978 73.6 0.95  2005 1.6 0.29 

1979 87.7 0.98  2006 0.6 0.33 

1980 59.0 0.97  2007 1.2 0.37 

1981 50.4 0.97  2008 0.5 0.42 

1982 29.4 0.96  2009 0.9 0.46 

1983 14.7 0.95  2010 2.2 0.51 

1984 31.6 0.94  2011 1.1 0.56 

1985 11.2 0.93  2012 1.0 0.60 

1986 11.4 0.92  2013 4.9 0.64 

1987 6.2 0.91  2014 4.6 0.69 

1988 7.0 0.89  2015 0.2 0.73 

1989 4.8 0.87  2016 1.0 0.76 

1990 4.9 0.85  2017 2.3 0.79 

1991 1.8 0.82  2018 1.3 0.67 

1992 5.2 0.79  2019 1.2 0.67 

1993 3.5 0.76  2020 1.0 0.67 

1994 5.4 0.73     
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Appendix B2: Recruitment sex ratio for lakes IJsselmeer and Markermeer 
 

Whether an eel becomes a female or a male depends on external factors, such as food availability or 

(intraspecific) competition. This means that the sex ratio can change over time if, for example, the food 

levels or the eel density change. 

 

To parametrize the demographic model for the lakes IJsselmeer and Markermeer, an estimate of the 

initial sex ratio of the recruitment is required. For this reason, a statistical analysis was conducted to 

determine the initial sex ratio of eel in these lakes. The analysis is done with market sampling data 

(Chapter 2), as this was the only available data in the Netherlands where sex is determined. As there is 

also asymmetric growth between males and females, especially for the larger eel, (fishing) mortality is 

expected to influence the sex ratio of the larger individuals. Therefore, in order to parameterize the 

demographic model, the sex ratio needs to be determined for eel as young as possible. However, the sex 

is difficult to assess for small individuals (or the eel has not determined its own sex yet) and almost no 

eels from sizes below 28 cm are caught in the market sampling. Therefore, eels at an estimated age of 2 

years are selected for the analysis. 

 

Year class estimate  

Sex ratio needed to be estimated by year class. To determine the year class, the age samples across 

years from the market samples (see Chapter 2) were used to construct a fixed sex-specific age-length 

key using only the age readings from eel in lake IJsselmeer and Markermeer, assuming that for each 

sex, the growth rate does not change across the years.  

The first step is to estimate the age for the fish for which we have length measurements. In the analysis, 

we first applied von Bertalanffy growth model (VBGF) model to the fishes with both age and length 

measurements. The model was applied to females and males separately. Only the end measurements 

were used. The von Bertalanffy Growth Function (VBGF) estimates the mean length at a given age. We 

then applied the inverse transformation of the estimated von Bertalanffy length-age function to get the 

estimated age, assuming the length measurement is the mean length. Von Bertalanffy growth, from 

Beverton and Holt (1957): 

 

𝐿௧ = 𝐿ஶ[1 − 𝑒ି௄(௧ି௧బ)] 

where 𝐿௧ is the expected or mean length at age t, 𝐿ஶ is the asymptotic mean length, 𝐾 is a measure of 

the exponential rate at which 𝐿௧ approaches 𝐿ஶ (Schnute and Fournier, 1980) and 𝑡଴ is the theoretical 

age at which 𝐿௧ would be zero. The estimated parameters were (females: Linf = 85.3, K = 0.13, t0 = -

1.00, males: Linf = 45.7, K = 0.16, t0 = -4.02). Inverse VBGF: 

 

𝑡 =
−1

𝐾
ln(1 −

𝐿௧

𝐿ஶ

) + 𝑡଴ 

The age of the individual fish with length measurements was estimated, after applying the inverse VBGF 

function. As the length samples were assumed to be representative of the population in the lakes, this 

would give an approximated age distribution which is representative of the population. A young age (i.e. 

age 2) was selected for further analysis. The age was estimated using the inverse VBGF and translated to 

year class. To get an integer number, the age was rounded to the nearest integer.  

 

Proportion of female at recruitment 

The proportion of females was estimated for each yearclass at age 2 (from 1976-2017). 

Four statistical models were applied: 
1) GLM using year as a continuous predictor. Both GLM’s were estimated through maximum likelihood 

estimation. 

2) Segmented regression with one breakpoint, using year as a continuous predictor. The model 

coefficients were estimated through maximum likelihood estimation with an interactive procedure of 

estimating the best breakpoint.  

3) Segmented regression similar to model 2, but with two breakpoints.  
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4) GAM using thin plate regression spline (i.e. smooth function) with year as the predictors. The 

dimension of basis k is set as 6 (number of basis function=k-1=5). We limit a relatively low k to 

avoid over-fitting. Smoothing parameters were estimated through generalized Cross Validation 

(GCV) criterion.  

In all 4 models, the response variable is modeled as a Bernoulli distribution, and a logit link function links 

the linear predicter to the mean of the Bernoulli distribution. Model 3, the segmented regression with two 

breakpoints, had the lowest AIC (Akaike Information Criterion) and was selected for use in the 

demographic model (Chapter 3). The results show that a large number of males from yearclass 1976-

1977 is causing a very low female proportion for these 2 cohorts, and a substantial increase of the 

proportion of females for the years after. These two first years are a bit strange, and further data 

analysis is needed to determine if they are outliers due to, for example, poor data collection or if they 

actually represent the true value. This is also the case for the yearclasses 1978-1980 where a 100% 

female sex ratio was observed at the estimated age 2. Yearclass 1983, 1985, 2000 and 2001 are 

missing, due to the missing gender samples in 1985, 1987 and 2002-2003. There are a lot of 

approximations and pre-processings during the calculation: a time-invariant age length key (ALK) is 

assumed and it is estimated from very few age samples. However, it is the result of the best available 

information at present. Additional age readings and data analyses are needed to confirm the result 

presented here. 

 

Figure B1. estimated proportion of female by yearclass (1976-2017) at age 2. Black: segmented 

regression with 2 breakpoints (selected option); Red: one value across all years; blue: segmented linear 

regression with one breakpoint; green: spline. Raw annual estimates are plotted as grey bars. 
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Appendix C1: Overview eel mortality pump stations with a propeller pump 
 

 

 

 

 Pump description  Capacity  
(m3/min) 

Height 
(m) 

Rotation 
(rpm) 

Name n dead 
(%) 

damaged 
(%) 

 Reference 

a
x
ia

a
lp

u
m

p
 

Gesloten schroefpomp 60 0.8 355 Kortenhoef 11
8 

32   Vriese et al., 2010 

Gesloten schroefpomp FFI 81 1 333 FFI   25 0   Vriese, 2009 

Gesloten schroefpomp 1,500   50 J.L. Hoogland 77 5 5  Kruitwagen & Klinge, 2010a 

Gesloten schroefpomp 2,500 0.6 80 A.F. Stroink 10 0 30  Kroes et al., 2006 

Open schroefpomp 24 0.98   Thabor 21 38    Vriese et al., 2010 

Open schroefpomp 60 2.7 500 Stenensluisvaart ? 100   Germonpré et al., 1994 

Open schroefpomp 76     Offerhaus 10 0   Vriese, 2010 

Open schroefpomp 200 0.6 165 Den Deel ? 8 30  Riemersma & Wintersmans, 
2005 Bulbpomp Nijhuis 3,000 variable 64 IJmuiden  25

1 
41* 41*  Kruitwagen & Klinge, 2008a 

Schroefpomp 30 1.35 900 Kralingseplas 19 100   Kruitwagen & Klinge, 2010b 

Schroefpomp 400 1,34-4,64   Krimpenerwaard 19 100   Kruitwagen & Klinge, 2010b 

Schroefpomp 184 1.05 185 De Waker 69 1.4   VisserijServiceNederland,2010 

Schroefpomp 2,400     Zaangemaal 65 0   VisserijServiceNederland,2010 

Schroefpomp 180 1.07 180 Meldijk 30 33   Kroon & van Wijk, 2012 

propeller 60 2.7 500 Woumen (BE) ? 100   Germonpré et al., 1994 

propeller 100  480 Avrijevaart/Burgraven (BE) 39 98   INBO 

BVOP 255 5.4 360 Lijnden 2       

Gesl. Schroefp. (compact) 90 2.7 364 HZ Polder 6    Vriese et al., 2010 

Gesl. Schroefp. (compact) 105 2.2 291 Berkel 5    Vriese et al., 2010 

Gesl. Schroefp. (compact) 135 0,5-1 307 Antlia 6    Vriese et al., 2010 

Gesloten schroefpomp 26 3.08   Makkemermar 2    Vriese et al., 2010 

Gesloten schroefpomp 42 2,4 - 3,1   Aalkeet buitenpolder 1    Kruitwagen & Klinge 2010c 

Open schroefpomp 40 1.67 580 Nijverheid 2    Vriese et al., 2010 

Open schroefpomp 120 0.1   Tilburg 9    Vriese et al., 2010 

Gesloten schroefpomp FFI       Kralingseplas 3    Waning et al., 2012 

Open schroefpomp 90     Offerhaus 2    Kroes & de Boer, 2013 

schroefpomp 120 340 340 Balgdijk 5    Kroon & van Wijk, 2012 

    Pooled studies with n <10  32.6    

           

Table C1: Overview of eel mortality when passing through pumping stations with a propeller pump (axial water flow). * Underestimation as seemingly 
undamaged eels did reveal internal damage after dissection which could result in delayed mortality. 
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 Pump description  
Capacity  
(m3/min) 

Height 
(m) 

Rotation 
(rpm) Name n 

dead 
(%) 

damaged 
(%)  

Reference 

se
m

i-
a
x
ia

a
l 

p
u

m
p

 

Schroefcentrifugaalpomp 170 1.52   Tonnekreek 34 0   Vriese et al., 2010 

Hidrostal  10 890-1,200  2,300 0 3  Patrick & McKinley 1987 

Schroefcentrifugaalpomp 350 2.8 115 Schilthuis 27 22   Vriese et al., 2010 

BEVERON 505 2,4  143 Schoute (natuurlijke doortrek) 36 0   Kruitwagen & Klinge, 2008b 

BEVERON 525 5.4 200 Lijnden 6     

Hidrostal 21 3.6 577 Ypenburg 8    Vriese et al., 2010 

Hidrostal 42.5 3.5 552 Wogmeer 8    Vriese et al., 2010 

Schroefcentrifugaalpomp 300 4.4   Leemans 4    Kroon & van Wijk, 2013 

Schroefcentrifugaalpomp 250 2-5,5 165 
Abraham Kroes (Ringvaart 
gemaal) 

8    Kruitwagen & Klinge, 2010b 

VOPO met schroefomdraaiing 25 0.15 1,000 De Zllk 2    Vriese et al., 2010 

Schroefcentrifugaalpomp 85   416 Willem-Alexander 1    Vriese et al., 2010 

Schroefcentrifugaalpomp 24 1.15   B.B. Polder 2    Vriese et al., 2010 

Schroefcentrifugaalpomp 22 1.15 735 Meerweg 9    Klinge, 2008 

    Pooled studies with n <10  39.6    

           

Table C2 : Overview of eel mortality when passing through pumping stations with a propeller-centrifugal pump (axial-radial water flow). 
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 Pump description  Capacity  
(m3/min) 

Height 
(m) 

Rotation 
(rpm) 

Name n dead 
(%) 

damaged 
(%) 

 Reference 

ra
d

ia
l 

p
u

m
p

 

Centrifugaalpomp 38 3.5 368 Duifpolder 12 0   Vriese et al., 2010 

Centrifugaalpomp 60 5 49 Elektriek-Zuid ?  1.4 1.4  Germonpré et al., 1994 

Centrifugaalpomp 400 0.9 205 Boreel 49 49   Vriese et al., 2010 

Centrifugaalpomp 1,080 1.7 59 Katwijk 56 0   Kruitwagen & Klinge, 2007 

Centrifugaalpomp 325 3.5 168 Grootslag 438 0   Kroon & van Wijk, 2013 

Centrifugaalpomp 160 0.3  JC de Leeuw 5    Kroon & van Wijk, 2013 

Centrifugaalpomp 690 1.7 70 Gouda (natuurlijk) 2    Kruitwagen & Klinge, 2008c 

Centrifugaalpomp 690 1.7 70 Gouda (gedwongen) 4    Kruitwagen & Klinge, 2008c 

Centrifugaalpomp 28 0,55-1,05 320 Hoekpolder 1    Kruitwagen & Klinge, 2010c 

    Pooled studies with n <10  16.7    

           

Table C3 : Overview of eel mortality when passing through pumping stations with a centrifugal pump (radial water flow). 
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 Pump description  
Capacity  
(m3/mi
n) 

Height 
(m) 

Rotatio
n 
(rpm) 

Name n 
dea
d 
(%) 

damage
d (%)  Reference 

A
rc

h
im

e
d

e
s’

 s
cr

e
w

 

Turbinevijzels      Vijzel Bielefeld  ? 0   Spah, 2001 

Buisvijzel FFI 0.6 1 57 FFI  (gedwongen 
blootstelling) 

23 0   Vriese, 2009 

Vijzel 30 2.9 39 Sint-Karelsmolen  ? 4 10  Germonpré et al., 1994 

Vijzel 35 3.6 37 De Seine, Vlaanderen  ? 0 37  Denayer & Belpaire, 1992 

Spaans Babcock 500 2.2 17 Overwaard 43 2   Vriese et al., 2010 

De Wit vijzel  660 0.3 22 
Halfweg (natuurlijke 
doortrek) 24 0   Kruitwagen & Klinge, 2008c 

Buisvijzel (Landustrie Sneek 
BV) 40 2.7 39.1 Ennemaborgh 101 8   Vis et al., 2013 

Buisvijzel (Landustrie Sneek 
BV) 

23 2.7 23.8 Ennemaborgh 112 3   Vis et al., 2013 

Vijzel 335 0.35   Kolhoorn 16 0   Kroon & van Wijk, 2013 

Vijzel 350 1.14   Kadoelen 59 8   VisserijServiceNederland, 
2010 

Vijzel   23-31  160 0 0.6  Kibel, 2008 

Vijzel 100  25 Isabella 48 13.5   INBO 

Vijzel 200  21 Isabella 131 14.5   INBO 

Vijzel 90 0.64   Overtoom 7    VisserijServiceNederland, 
2010 

Vijzel 43 1.25   Bergermeer 3    VisserijServiceNederland, 
2010 

Vijzel 660 0.3 22 
Halfweg (natuurlijke 
doortrek) 5    Kruitwagen & Klinge, 2008c 

Buisvijzel FFI 32     Hoekpolder 2    Wanink et al., 2012 

Vijzel       Schalsum 2    Koopmans, 2013 

Vijzel 23 0.73   Sudhoeke 9    Vriese et al., 2010 

    
Pooled studies with n 
<10 28 3.6    

           

Table C4 : Overview of eel mortality when passing through pumping stations with an Archimedes’ screw. 
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Appendix C2: Barrier assessment list Boezem and National waters  
 

 

 

 
Figure appendix C2: All main 2nd and 3rd hierarchy barriers, where green indicates no mortality and red 

indicates a mortality estimate; the HPS’s in the rivers: 1: WKC Amerongen, 2: WKC Alphen and 3: WKC 

Linne and 4: the barrier-complexes at IJmuiden are numbered. Orange barriers are not taken into 

account because 5: the WKC Hagestein has not been in operation since 2005, and no data is availalbe on 

6: the canal from Belgium to Terneuzen.  
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Table C5. Overview of the most important barriers, their characteristics and their estimated mortalities 

(based on Winter et al. 2013a, 2013b and updated for 2018-2020).  

 

Waterboard Site (potential barrier) Barrier type from to Potential silver eel Mortality (%) Losses per site (%)*
starting biomass (ton) best guess min max min max

noorderzijlvest Spijksterpompen Gema B Z 0.85 0.30 0.25 0.25 30 30
noorderzijlvest Noordpolderzijl Gema B Z 0.56 0.30 0.17 0.17 30 30
noorderzijlvest Waterwolf Electra Gema+Keer B R 7.05 0.30 0.59 1.95 8 28
noorderzijlvest De Drie Delfzijlen Gema+Spui B Z 2.11 0.30 0.18 0.58 8 28
noorderzijlvest Lauwerssluizen Spui+Sche B Z 83.86 0.00 0.00 0.00 0 0
wetterskip Roptazijl Gema B Z 5.50 0.50 2.75 2.75 50 50
wetterskip Zwarte Haan Gema B Z 5.50 0.50 2.75 2.75 50 50
wetterskip Lemmer (Wouda) Gema + Sche B Z 1.83 0.25 0.25 0.44 14 24
wetterskip Stavoren Gema + Sche B R 36.64 0.06 1.21 2.09 3 6
wetterskip Ezumazijl Gema + Sche B R 5.50 0.50 2.25 2.69 41 49
wetterskip Harlingen Spui+Sche B Z 54.96 0.00 0.00 0.00 0 0
wetterskip Dokkumer Nieuwe Zijlen Spui+Sche B R 73.29 0.00 0.00 0.00 0 0
hunze en aa Duurswolde Gema+Spui B Z 1.61 0.50 0.22 0.74 14 46
hunze en aa Termunterzijl Gema+Spui+Sche B Z 1.45 0.30 0.40 0.43 28 30
hunze en aa Nieuw Statenzijl Spui+Sche B Z 6.90 0.00 0.00 0.00 0 0
hunze en aa Delfzijl Spui+Sche B Z 6.10 0.00 0.00 0.00 0 0
reest en wieden Stroink Gema B R 15.43 0.11 1.70 1.70 11 11
reest en wieden Zenemuden Gema+Keer+Sche B R 5.14 0.50 1.35 1.41 26 28
velt en vecht Haandrik WKC+Stuw+Vist B R 23.58 0.17 4.01 4.01 17 17
amstel gooi en vecht De Ruiter Gema + Sche B R 5.60 0.25 1.15 1.37 21 25
amstel gooi en vecht Mijndense Sluis Gema + Sche B R 4.55 0.10 0.37 0.45 8 10
amstel gooi en vecht Spiegelpolder Gema + Sche B R 2.10 0.25 0.43 0.51 21 25
HHNK Kadoelen Gema B R 0.93 0.08 0.07 0.07 8 8
HHNK De Waker Gema B R 0.31 0.02 0.01 0.01 2 2
HHNK Leemans Gema B Z 2.49 0.10 0.25 0.25 10 10
HHNK Lely Gema B Z 0.93 0.25 0.23 0.23 25 25
HHNK Vier Koggen Gema B R 2.18 0.10 0.22 0.22 10 10
HHNK Grootslag Gema B R 1.56 0.02 0.03 0.03 2 2
HHNK Zaangemaal Gema + Sche B R 3.74 0.01 0.01 0.03 0 1
HHNK Overtoom Gema + Sche B R 0.03 0.04 0.00 0.00 1 4
HHNK Helsdeur Gema+Spui+Sche B Z 9.97 0.30 0.84 2.75 8 28
HHNK Schermersluis Sche B R 0.31 0.00 0.06 0.06 20 20
HHNK Oostoever Spui B Z 3.74 0.00 0.00 0.00 0 0
rijnland Katwijk Gema B Z 18.74 0.01 0.19 0.19 1 1
rijnland Halfweg Gema B R 6.72 0.04 0.27 0.27 4 4
rijnland Gouda Gema B R 3.54 0.10 0.35 0.35 10 10
rijnland Leeghwater Gema B R 5.66 0.30 1.70 1.70 30 30
rijnland Spaarndam Gema + Sche B R 6.36 0.01 0.02 0.06 0 1
Delfland Schoute Gema B Z 1.16 0.30 0.35 0.35 30 30
Delfland Zaayer Gema B R 0.09 0.02 0.00 0.00 2 2
Delfland Westland Gema B R 0.39 0.10 0.04 0.04 10 10
Delfland Schiegemaal Gema B R 0.39 0.10 0.04 0.04 10 10
Delfland v.d. Burg Gema B Z 1.16 0.30 0.35 0.35 30 30
Delfland Parksluizen Gema + Sche B R 0.96 0.25 0.07 0.22 7 23
HHSK Schilthuis Gema B R 5.07 0.30 1.52 1.52 30 30
HHSK Verdoold Gema B R 3.67 0.11 0.40 0.40 11 11
HHSK Johan Veurink Gema B R 1.75 0.50 0.87 0.87 50 50
HHSK Krimperwaard Gema B Z 1.40 0.30 0.42 0.42 30 30
HHSK Abraham Kroes Gema + Sche B R 5.42 0.30 0.46 1.50 8 28
rivierenland J.U. Smit Gema B R 1.58 0.04 0.06 0.06 4 4
rivierenland Altena Gema B R 1.10 0.50 0.55 0.55 50 50
rivierenland Hollands-Duits Gema B R 1.10 0.25 0.28 0.28 25 25
zuiderzeeland Vissering Gema + Sche B R 53.86 0.25 7.41 12.79 14 24
zuiderzeeland Buma Gema + Sche B R 41.19 0.25 5.66 9.78 14 24
zuiderzeeland Smeenge Gema + Sche B R 28.51 0.50 7.84 13.54 28 48
zuiderzeeland Wortman Gema + Sche B R 47.52 0.25 6.53 11.29 14 24
zuiderzeeland De Blocq van Kuffeler Gema + Sche B R 79.21 0.25 10.89 18.81 14 24
zuiderzeeland Lovink Gema + Sche B R 28.51 0.25 3.92 6.77 14 24
zuiderzeeland Colijn Gema + Sche B R 38.02 0.12 2.46 4.25 6 11
R Sluizen-complex IJmuiden Gema+Spui+Sche R Z 121.90 0.15 18.28 31.69 15 26
R Krammersluizen Sche B Z 7.30 0.00 3.65 3.65 50 50
R Bergse Diep Sluis Sche R Z 0.59 0.00 0.29 0.29 50 50
R Terneuzen Sche R Z 0.00 0.00 0.00 0 0
R Volkeraksluizen Sche R Z 7.30 0.00 3.65 3.65 50 50
R Bathse spuisluis Spui R Z 95.67 0.00 0.00 0.00 0 0
R Krabbersgat-sluizen Spui+Sche R Z 0.00 0.00 0.00 0 0
R Houtrib-sluizen Spui+Sche R Z 0.00 0.00 0.00 0 0
R Haringvliet-sluizen Spui+Sche R Z 265.68 0.00 0.00 0.00 0 0
R Aflsuitdijk KornwerderzandSpui+Sche R Z 228.80 0.00 0.00 0.00 0 0
R Afsluitdijk Den Oever Spui+Sche R Z 228.80 0.00 0.00 0.00 0 0
R Oranjesluizen Spui+Sche+Vist R Z 180.99 0.00 0.00 0.00 0 0
R Nieuwe Waterweg R Z 260.80 0.00 0.00 0.00 0 0
* taking alternative routes and blockage into account (cf. Winter et al. 2013)
**Gemaal=Pumping Station; Sche=Ship Lock; Spui=Discharge Sluice; Vist=Fishway; Stuw=Wier; Keer=Protection Sluice
B=Boezem waters; R=National waters; Z=Sea

Potential silver eel losses (ton)
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Appendix C3: Validation of the assessment method for the North Sea Canal  
 
In 2016-2018, extensive acoustic telemetry studies and mark-recapture studies were carried out for the 

North Sea Canal region, including lake Markermeer (Winter et al., 2019; Winter et al., 2020). Within 

these studies, migration routes and losses of eels along the routes could be determined from the acoustic 

telemetry results, and with mark-recapture studies at IJmuiden with PIT-tags. The accurate population 

estimates of the number of silver eels that arrive at IJmuiden could be determined. These results can be 

compared to the outcome of the hierarchical approach used in this evaluation to assess the biomass of 

silver eel that escapes to sea via IJmuiden.  

 

In the evaluation approach to assess silver eel escapement at IJmuiden, this is assessed to be 122 

tonnes per year for 2018-2020, using the new insights showing that 40 % of the silver eel from lake 

Markermeer also migrate via IJmuiden. The starting of biomass silver eel in this evaluation method for 

the North Sea Canal (IJmuiden) catchment was assessed at 212 tonnes, i.e. an average loss rate of 

43%.  

 

The mark recapture-studies for silver eel migration at IJmuiden yielded 101.347 ± 10.990 silver eels in 

2016 and 89.233 ± 9.791 in 2017 (Winter et al., 2019; Winter et al., 2020). Earlier assessments yielded 

70,000-100,000 silver eels arriving at IJmuiden in 2007-2008 (Winter 2011), which is in line with the 

later, more-precise estimates of the number of silver eels at IJmuiden. With an average weight of 850 g 

per silver eel for the region (Winter, 2011), this yields 86.1 ± 9.3 tonnes in 2016 and 75.8 ± 8.3 tonnes 

in 2016. The telemetry data suggests that 45-50% of the starting silver eel do not reach the sea, even 

though the representativeness of the various tagged groups in the hinterland of the North Canal 

catchment for all starting silver eel within this catchment is not known. This implies that 152-191 tonnes 

of silver eel would have started as derived from the combination of mark-recapture experiments and 

telemetry studies.  

 

Given the number of assumptions that are present in the evaluation approach, the outcome of the 

starting biomass of 212 tonnes vs. 152-191 tonnes in the telemetry studies, the escapement of 122 

tonnes, vs. 76-86 tonnes in the telemetry studies and the overall loss rate of 43% vs. 45-50% in the 

telemetry studies, these are in relatively close range and add confidence in the following assessment 

method in this evaluation for the other regions. These results suggest that the escapement and starting 

biomass for this region is slightly overestimated in the evaluation, when compared to the results of the 

telemetry experiments. 
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Appendix C4: Overview of the parameters used in the barrier mortality 

estimation. 
 
Table C6. Overview of the parameter estimations used in the estimation of the barrier mortality. 

Name Value Period Description 

fracAm 0.219 all proportion through Amerongen 

CboezemCzee 0.370 all prop. from boezem to sea 

CboezemCrijks 0.630 all prop. from boezem to national waters 

CpolderCzee 0.200 all prop. from polder to sea 

CpolderCboezem 0.800 all prop. from polder to boezem 

Spolder 0.347 all mortality polder to boezem or sea 

Sboezemzee 0.050 all mortality from boezem to sea 

Sboezemrijks 0.152 all mortality from boezem to national waters 

Srijks 0.023 2006-2008 mortality from national waters to sea 

Srijks 0.023 2009-2011 mortality from national waters to sea 

Srijks 0.021 2012-2014 mortality from national waters to sea 

Srijks 0.015 2015-2017 mortality from national waters to sea 

Srijks 0.020 2018-2020 mortality from national waters to sea 

SWKClinne 0.170 2006-2008 mortality HPS Linne 

SWKClinne 0.170 2009-2011 mortality HPS Linne 

SWKClinne 0.130 2012-2014 mortality HPS Linne 

SWKClinne 0.130 2015-2017 mortality HPS Linne 

SWKClinne 0.130 2018-2020 mortality HPS Linne 

SWKCalph 0.150 2006-2008 mortality HPS Alphen 

SWKCalph 0.150 2009-2011 mortality HPS Alphen 

SWKCalph 0.140 2012-2014 mortality HPS Alphen 

SWKCalph 0.140 2015-2017 mortality HPS Alphen 

SWKCalph 0.140 2018-2020 mortality HPS Alphen 

SWKCamer 0.095 all mortality HPS Amerongen 

PODD 0.000 2006-2008 assisted migration 

PODD 0.134 2009-2011 assisted migration 

PODD 1.362 2012-2014 assisted migration 

PODD 1.900 2015-2017 assisted migration 

PODD 2.290 2018-2020 assisted migration 
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Appendix C5: Diadromous fish monitoring programme 
 

A survey programme started in 2012 to monitor the abundance of migrating silver eel on five exit points 

(Kornwerderzand sluices, Den Oever sluices, North Sea Canal, New Waterway channel, Haringvliet-West 

inlet) and two entry points for migratory fish (River Rhine and River Meuse) during spring and autumn 

(Figure C3). The programme is a collaboration between WMR, Rijkswaterstaat and commercial 

fishermen. The months September, October and November were selected for illustrating trends in silver 

eel abundance at each location. In 2015 and 2018 four extra locations were monitored but not shown in 

Figure C4. Both eel biomass and numbers fluctuate strongly on a yearly basis at all locations (Figure C4). 

As the trends index is relatively short (9 years), there is no information before the implementation of the 

EMP and there are missing years (Figure C4), the data is not used in this report. 

Figure C3. Fyke Locations in the diadromous fish monitoring programme. 
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Figure C4. CPUE of silver eel caught during the diadromous fish monitoring per catch location. Data is 

missing or not used because of inconsistency of sampling locations/period for the Haringvliet-West inlet 

in 2018, for the Den Oever sluices in 2012, 2014 and 2015, for the Kornwerderzand sluices in 2012, 

2013 and 2015, the River Meuse in 2017 and 2018, the North Sea Channel in 2015 and for the River 

Rhine in 2012, 2016 and 2018. 
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